The red book on CAPRI GAMS coding

By Wolfgang Britz, Bonn University

Preface to 2016 edition

This document was originally created as a deliierabthe project CAPRI-RD The

document was included into the CAPRI developmemntktiin 2016, after minor layout
revisions. | tried to modify the headings of thedment so that the table of contents reads as
a numbered check list. | also replaced the redgaeen colours in order to make black and

white prints of the text readable.

(Uppsala 2016, Torbjorn Jansson)

Table of contents

The red book on CAPRI GAMS COOING ...cooiiiiiiiiiiiiiiiiiiiiie et 1
TRE ODJECLIVES ...ttt ettt e e e e e e e e e e e e e 3
Coding conNVENtiONS IN GAMSuuiieiiimmmmmn e e ee et e eeeeeea e e e e e e e aaaeataeaaaeeasaeeereeeernnnnes 4
N2 T g T To T eT0] 0 V7= o 1 0] o PSSR 4
1. Use clear and easy to understand names for synaloaldgiles.ccc...... 4
2. Let equation names start With “@_" ... 5
3. Let parameter names start with “p_" and variablesmmes with “v_"................. 5
4. Use clear and easy to understand codes for setegitsm...............ccevvvvvinvciinnnnn. 5
5. Always add an explanatory text to set elementS.........ccoooeeveeiiiiiiiiiiiiiiiiinnnnd 6...
OIS ToTo [o) BT £ TSP 6
6. Use domain checking wherever possible. ... oo 6..
7. Use sub-sets wherever possible. ..., 6
8. Don't declare the same collection of set membessand time.ceeeeee. 6

! Common Agricultural Policy Regionalised Impact heTRural Development Dimension, a
small to medium-scale focused research projectruheéeSeventh Framework Programme
Project No.: 226195

Coding style and STFUCTUIINGccooiviiiiiieeiiie e e e e e e e e e e e e eaes 7

9. Declare symbols used in one file only at the tofhat file..................cccoeeveiininnns 7
10. Separate processing code from dataccccceeceeiieeeieeeeiiiiieeeei e 7
11. Generate files with a clearly defined puUrPOSE..ccee..ccceeeeeiiiiiiieeeeee e 7.
12. Avoid unnecessary deep include Structures (> .3)cum.ccceeeeeeeeiiieeeeeiiiiiiiiineeeeenn 7
13. Use at most one statement Per liNe........cooceeeeeeiiiiiiiiee s 7
Indentation and program flOW StIUCLUIES ... oo 8
14. Use indention to make code readable e eeeeiiiiiiiiiiiee 8

15. Loop and other program structures should be clesityble by 3 spaces

(110 (=] 01 ¢= 11 o] o oS 8
16. $ operators are generally preferred over IF statatBe..............cccccoevvvvviciceeeennnn. 8
17. Remove duplicate code by moving it to an inclu@s.fi...............ccccceeeeiiininnnnnnn. 9
18. Use $BATINCLUDE transparentlycoocceeeeeroiieeeeeeeniiiiiineee s eniinieeeee e 9.
19. S$ONMULTI may be used only locally for well motivchtases, followed by
(O] 1 1 I P 9
0T 0)] | SRR 9
20. $IF should always be replaced by $IFI — the notecasnsitive version. 9
21. $IFI should only be used for single line statements...........ccccoeeeeeeeeiiiciininnnee, 9
22. If several lines refer to the same $IFI statemeBtSHTENI ... $ENDIF should
DB USEA. ... 9
23. Find a compromise between the number of files dezluand their length.......... 10
T o] g (=T o] o1 o [P S SRR PUPPPPTPPPPRRR 10
24. Include tests of whether an include file doesatsgroperly ... 10
(0] 3 0] 41T 01 £ PP 10
25. INtroduce YOUISEI!eeeeii e 11
26. Generate a file header explaining the purpose effille. ... 11

27. Add clear and easy to understand comments to angetffeexplaining GAMS
(07 0T = TR PP 11

1Y/ = W = - RO 12

28. Add meta data information to data and parameters............ccccceeeeeieeeeeeeeeeeene. 13

29. Load data and parameters wherever possible as GEXXMETA information

included in the META set which is passed alongtieeluction line................... 13
Y NI T To I (2111 T RS RRPPPPPP 13
30. Only commit fully functioning and tested code toNSV...........ccccoeeeeeeevvieveennnnnns 14
31. Update before COmMmIttiNg!..........uvvveuiieeeeeeiiiiiiiee e e e e e e e e e 14

The objectives

The aim of the CAPRI GAMS coding convention is totivate a coding style generating
GAMS program code which:

* can be easilynderstoodby another GAMS programmer
» can be successfulipaintainedand updated;
* and can source automated code documentatisystem.

The Java code conventiondtf://java.sun.com/docs/codeconv/html/CodeConwvastdod

give the following reasons to establish coding @mions: ‘Code conventions are important

to programmers for a number of reasons:
* 80% of the lifetime cost of a piece of softwaresgoemaintenance.
» Hardly any software is maintained for its whole Iy the original author.

» Code conventions improve the readability of théveate, allowing engineers to
understand new code more quickly and thoroughly.

» If you ship your source code as a product, you rieedake sure it is as well
packaged and clean as any other product you create.

As CAPRI is indeed by now also a “software packaghich is distributed to different teams
and clients, the arguments above are also validdolUsing code conventions is not “I'art
pour I'art”. Whoever has ever tried to work on prarg code which was coded by somebody
else knows from own experience that unfortunateingmof symbols, missing or mis-guiding
comments, bad structured code, highly personahgostiyle etc. can cost a lot of time and
provoke terrible errors. It is highly egoistic foese a few minutes by writing sluggish, un-
documented code, and let others later deal witlptbblem to maintain it. The set of rather
simple rules compiled in our guide supports uscaiave costs and time, and to ensure that
we can maintain in future the code of CAPRI.

Coding conventions in GAMS

Compared to other programming languages such a§ RAR, PASCAL, C(++), Java or

C#, GAMS does not break its code into functionganslubroutines which clearly defined
inputs and outputs. Equally, GAMS does not proddeping for symbols: all GAMS

symbols are known and accessible past the pointerthey had been declared; they have all
global scope. Whereas coding conventions for magjramming languages typically have a
strong focus on modularisation of the code andrdeaping, we need to solve that issue for
GAMS differently. Accordingly, naming conventionsdaclearly structured code are even

more important in GAMS where every symbol has glclcape!
Naming conventions

1. Use clear and easy to understand names for symbo Is and files.

A good name is self-explanatory, but short. Plé&sg in mind that the code basis of CAPRI
is very large, a name such gs emissionFactdris still rather general (but clearly better than
“p_factor” and much better thap“f’). In doubt, ask a colleague not familiar with the

problem you are working on if she or he is ablenderstand the chosen symbol names.

If a symbol name consists logically of several veprebch new word except for the first one
should start with upper case (we save space coghparesing underscores). That so-called

“camelCase’ is a standard e.g. proposed in Java coding cdioren

© PARAMETER p_data(rall,cols,rows,years) "Generic dat a cube of CAPRI";
PARAMETER p_popGrowthRate(rall) "Population growth rate";

An exception can be made if the tokens already cim@@cronyms in upper case so that

reading becomes cumbersome:

© PARAMETER p_CAPMTRPOolicy “Policy parameters for the MTR of the CAP”
In that case, it is better to use:

© PARAMETER p_CAP_MTR_policy “Policy parameters for t he MTR of the CAP”

Discouraged is the use of very short symbols wttereneaning is not clear in the context,
such as:

® PARAMETER i,p,q;
Please keep in mind that the very same name ceulséd by somebody else for a different
symbol! If you introduce a hew symbol, first usedsch in files” from the GAMSIDE to

make sure that the symbol name is not alreadyen us

Always add an explanatory long text to the decianabf symbols, if possible stating physical

units or other elements helping to provide a ctedimition:

© PARAMETER p_minFeedSharePerc(regions,animals,feed) “Minimum feed shares per region,

animal and feed stuff in % of dry matter intake”

Bad is:

® PARAMETER p_minFeed;

As, (1) no domains are given, (2) the name is aodug (could be per animal, in a region ...)
and (3) an explanatory text is missing.

Note that vowels often can be dropped to shortemesae.g. p_cnsQuritis almost as easy
too read asp_consQuant”. The use of “scientific” names such‘g@s alpha”, “v_gammd’

etc. is discouraged for two obvious reasons. Kirsiteir meaning is far from clearly defined
and highly context depending. Secondly, therehiage danger that the very same symbol

name is introduced somewhere else in the codenig#ol possible conflicts.

Tipp: “Find in files” from the GAMS IDE can be usedftod all occurrences of a string over

directories and files — easing dramatically th& tasrename a symbol in a project.

2. Let equation names start with “e_"

There is tradition in CAPRI program to let equasi@nd with an underscore which at least

for old code can be kept.

3. Let parameter names start with “p_" and variable s names with “v_

That eases it dramatically to read equations inghedquations as the GAMS notations is

ambiguous in the sense that one cannot see wlaaimpter is and what a variable.

Parameters which are endogenous during calibratiequations should start with PV _,
variables which are fixed during calibration shobé&start with VP_. Sets do not a have a
prefix. The conventions should it make easier tdenstand what type of GAMS symbol is

used.

4. Use clear and easy to understand codes for sete lements

As for any GAMS symbol, take time to create setn&et names that indicate the meaning of
the set. In that way the code becomes more selirdenting, and the risk of misuse is

reduced.

5. Always add an explanatory text to set elements

Explanatory texts for set elements track the seuihout the code and into GDX-containers,
and are therefore a good way of documenting thenmgaf an element. Note: an
explanatory text or comment does not replace agolppelected set element code.

Usage of sets

Sets are a central element of the GAMS languagey $tructure logically the code by
spanning the “problem dimensions”, such as timag¢spproducts or processes. Set names
should be clear, but generally short as otherngisgements become very long.

6. Use domain checking wherever possible.

Domain checking means that a symbol declaratiddAMS includes the information which

sets are allowed on a specific dimension of a syneg.

© p_maxFeedShare(RALL,PACT,A,FEED) "Maximum shares for each feedingstuff, expressed

in dry matter"

Domain checking might be cumbersome to implemedtraight require the use of

SAMEAS, but it can avoid terrible errors which atberwise very hard to detect.

7. Use sub-sets wherever possible.

Sub-sets are derived from other sets. They hengetste a domain clearly.

8. Don't declare the same collection of set members a second time.

GAMS offers the so-called alias for that, the sonfstly used notation in CAPRI in alias
statementsistoaddal, 2 .., e.g.

©® ALIAS (regions, regionsi, regions2)
If you need the same collection in another setldoveor domain checking, use the
possibility to introduce a complete set in a GAMS declaration. It is proposed to use for
sets which only used for that purpose the “SET tation is seen below, e.g.

© SET SET_FUELS / gasoline, diesel /;
SET fuelRows(Rows) / set.SET_FUELS/;
SET fuelCols(Cols) / set.SET_FUELS/;

That notation can also to be used to avoid repgatitiections of set elements in sub-sets,
e.g.

© SET SET_FINFUELS / gasoline, diesel /;
SET SET_RAWFUELS / natGas, crudeOil/;

SET fuels / set.SET_FINFUELS, set.SET_RAWFUELS/;
SET finFuels(fuels) / set.SET_FINFUELS/;

Coding style and structuring

9. Declare symbols used in one file only at the top of that file.

If the file is used in a loop or if statement, battdeclaration in that file is not allowed, pug th
declarations into a separated file with “_decl” epged to the file name, and store it in the

same sub-directory.

10. Separate processing code from data

Put the numerical data entering the code if possibthe relevant directory under “dat”, and
beyond a certain size, generate a GDX file fronteabo that the GAMS code does not

comprise an unnecessary high amount of code lines.

11. Generate files with a clearly defined purpose.

Each file should have clearly defined inputs antgpots, and especially the latter should form
a logical unit. To give an example: a file whicHides animal requirements should not as a

kind of by-product correct herd sizes.

12. Avoid unnecessary deep include structures (> 3)

Deep include structures require to open many étdbe same time in the editor.

13. Use at most one statement per line

One declaration per line is recommended sincecb@rmages commenting. In other words,

© PARAMETER p_level(domainl,domain2);

p_size(domain3);
is preferred over
® PARAMETER p_level(domain2,domain2), p_size(domain3)
Each line should contain at most one statementmipie
© iTry=iTry +1,
® iTry =iTry +1; RUNR(MS) = NO;
Avoid lines longer than 80 characters, since tieayat handled well by many terminals and

tools.

Indentation and program flow structures

14. Use indention to make code readable

When an expression will not fit on a single linegdik it according to these general principles

(from the Java coding conventions):
» Break after a comma.
» Break before an operator.
» Prefer higher-level breaks to lower-level breaks.

* Align the new line with the beginning of the exmies at the same level on the

previous line.

» If the above rules lead to confusing code or tcecihdt's squished up against the right

margin, just indent 6 spaces instead.

15. Loop and other program structures should be cle arly visible by 3 spaces

indentation:

LOOP(RU,

Statements in here must be identated to show the st ructure of the program

16. $ operators are generally preferred over IF sta tements:

© p_myParam(RU) $ (p_otherParam) = 10;
is preferred over:

® IF (p_otherParam,
p_myParam(RU) = 10;
)i

And certainly one should not use a loop as shosdovb— it is not only harder to read,

but also slows down program execution:

® LOOP(RU $ otherParam(RU),
p_myParam(RU) = 10;
)i

However, that is bad style to code as follows sasot immediately visible that several

assignments all depend on the same condition:

® p_myParam(RU) $ (p_otherParam) = 10;
p_myParam1(RU) $ (p_otherParam) = 20;
p_myParam(RU) $ (p_otherParam) = 30;

* Avoid unnecessary complex if and loop structure§-oontrols in statements.
17. Remove duplicate code by moving itto aninclud e files.

18. Use $BATINCLUDE transparently

“Batcinlude” statements allow passing argumenisntancluded file. Inside the included file,
the passed arguments are referred to with “%1, &2 &ccording to the order they are
handed over. It is extremely cumbersome to read aygrogram as “%6” is simply
meaningless. That problem can be circumvented tétollowing coding trick which works
as a rename:

©® $setlocal regions %1

© p_myParam(%regions%) = p_someOtherParem(%regions%)

19. SONMULTI may be used only locally for well moti vated cases, followed by
$OFFMULTI.

$ONMULTI allows for several declaration of the sagyenbol. That is really dangerous, as

conflicting use of the same symbol might not besdietd.

Use of $IF

$IF is a compile time command, i.e. it is definimat pieces of the code are executed.
20. $IF should always be replaced by $IFI — the not case sensitive version.

21. $IFI should only be used for single line statem ents:

© $IFI %MODE%==CAPREG $INCLUDE “capreg\someFile.gms”.

22. If several lines refer to the same $IFI stateme nts, $IFHTENI ... $ENDIF should be

used.

Accordingly, avoid constructions such as:

® $IF %MODE%==CAPREG p_x(RS) = p_y(RS)
$IF %MODE%==CAPREG * p_o(RS)
$IF %MODE%==CAPREG * p_z(RS);

GAMS might treat the second line as a commerstditts with a “*”)! There,

according to the rule above, use:

© $IFTHENI %MODE%==CAPREG
P_X(RS) = p_y(RS)
*p_o(RS)
“p_z(RS);
$SENDIF

23. Find a compromise between the number of filesi ncluded and their length.

Files should whenever possible not be longer tl¥® lines, but also should consists of more
than 10 statements or so. A top level module shaavdal its structure in the GAMS code.

Error trapping

Error trapping means that the code itself comprigsts which throw an error, instead of
doing bad calculation due to missing or erronea@ia dr provoking run time errors. Imagine
e.g. a program which works on market balances.d@ssstock changes, all elements of the
market balance are defined to be non-negative.i@ang with the code while trapping with
$ and “if” statements negative market balance efggis probably the wrong tactic, as the
results will anyway not make sense. It is hencedgodest first if such logically nonsense

data are present and then to stop execution andtivamprogram user about such errors.

24. Include tests of whether an include file doesi ts job properly

All include files should (according to this red lbiddave just one well defined task. Try hard
to include a test at the top of the file which eaisn exception if necessary data is missing or

does not satisfy some lowest standard.

Use %system%.fn and %system.incline% so that etrapped provide information where

the problem happens. Example:

© ABORT $ exceptionFilenameRegions "Error in %system. fn%, line %system.incline%:
Population data missing for the following regions:" , problemRegions;
Comments

GAMS code is computer code — it is not prelimindegigned to provide easy to read text to
humans. Indeed, it is often necessary to write g@fequations differently as they are
documented in a paper to allow for an efficient os6&AMS. The meaning of the GAMS
code is therefore often not immediately evidentsdviterpretation of the code however can
provoke bad errors — somebody might change a statieas she or he has not clearly

understood what the purpose is.

Comments, on the other hand, are directed towardsalleagues who want to understand the
code — often, because there is the need to chardgbag it. Comments should especially
explain those things which are not easy to dedoat the code itself — they should not repeat

the obvious, but motivate why a certain task isecbith a specific way. Comments also help

us to quickly locate a statement or block of staets related to a specific task. Generally,

comments are at least as important as the GAMS itselé

25. Introduce yourself!

Those who contribute a bit of code should labeliih their name. We use pre-defined file

headers (see next) where the name of the auth®gag of the fields.

26. Generate a file header explaining the purpose o f the file.

Use the predefined template for doing so, so tteHTML based documentation can collect
that information automatically. The following stamd pieces of information should be

included:
* Name of the author
» Name of the file
* Purpose of the file
* In case of a file used with “$batinclude”: desdops of the arguments

The screen shot below shows an example

[
36363636 36 3636 3 363 336 3 3636 3 3633636 3 3636 330336 36336363 336 33363633636 36 3 36336363636 36 3636 W 36333636 363636 I NN N HEN

$ontext
CAPRI project
GAMS file : FEDTRHM.GHS
Qpurpose : Top level program of the feed distribution in CAPREG
Rauthor : W.Britz, Institute for Agricultural Poilicy, University of Bonn

M. Setti, G. Palladino, DIPROVAL Economics Unit, University of Bologna
{requirement functions)

Edate : B3.ez.11

Bsince : 19949

ErefDoc

EseeAlso : feedireqfnc.gms

EcalledBy : capreg.gms

$offtext

36363636 36 3636 3 363 336 3 3636 3 3633636 3 3636 330336 36336363 336 33363633636 36 3 36336363636 36 3636 W 36333636 363636 I NN N HEN

27. Add clear and easy to understand comments to an y not self-explaining GAMS

code.

Try hard to write self-explaining code, but assuhs it is not possible — hence add
comments! Motivate and explain statements and stideture, instead of repeating what the

code does again in plain English. Good code isdig®od paper: it is structured such that the

reader can easily follow the flow; comments suppuat. A typical example of a completely

useless comment which does not add informatiohasva below:

® * Set P_myParam to P_otherParam

p_myParam(Domain) = p_otherParam(Domain);

Save others the time to deal which such uselessnents.

Includereferencesvherever possible to comments, e.g. to the metbgob@al documentation
or project deliverables. If the GAMS code is depeld from a reference (e.g. the IPCC
guidelines to structure GHG emissions), note thiedference and the page (see also the

section on meta data), so that the code can bigedeqguickly.

Comments are introduced in a separatedin@vethe code to comment. The preferred
standard style of a comment referring to a statémeshown in the following. The same
indentation as the code commented upon shoulddsk(us. if the code start in column 10,

the “---“ starts also in column 10):
© *--- Here comes the comment

Block comments should be used to structure adigchlly into different sections:

)

* Here comes the description of the block

*,

It is good style to insert a comment above an helstatements which briefly explains the

purpose of the included file.

Meta data

Meta data in CAPRI follow an industry standard anel as far as possibly pushed
automatically along the production chain, as welirdegrated in the GUI. They allow
inspecting of different types of information regaglthe input data which had been use to
produce some final or intermediate data or restiligy are technically based on long texts
stored with elements of a multi-dimensional selectMETA. Part of the meta data are
automatically generated by the GUI when startingM®¥programs. It is therefore necessary
to manually also change the content of the METAndetn programs are started outside the
GUl!

28. Add meta data information to data and parameter s.

If new data sources are included in the program,maeta information, and in case of updates,
update both the numerical values and the metarrdton. The meta data should include the
following standardized fields if possible:

SET META_ITEHS /
“"Title of data set",
“"Date of version™,
“Abstract*™,
“Topic category”
“"Key words"™,
“"Temporal coverage',
"Language within the data set",
“"Mame of exchange format®™,
"Geographic coverage by name',
“Mame of originator organisation®,
“Mame of owner organisation®,
“Mame of processor organisation®™,
“Description of process step”
BASEYEAR
SIMYEAR
MODEL_SWITCHES
WORKSTEP
KEY
{3

The meta data are stored as texts to set elenethatst can be passed along the production

chain, as in:

JR
SET HETA /

(SET.R_EU15).'Build regional database'.'REGIO database'.'MAWME OF EXCHANGE FORHAT® GDX

(SET.R_EU15). Build regional database’.'REGIO database’.'TITLE OF DATA SET" "REGIOD domain®

(SET.R_EU15). Build regional database’'.'REGIO database’.'ABSTRACT' "HUTS II data on land use, crop areas and yields, herd sizes
(SET.R_EU15).'Build regional database'.'REGIO database'.'TOPIC CATEGORY' "AGRICULTURE"

(SET.R_EU15).'Build regional database'.'REGID database'.'KEY WORDS' ‘Land use, crop areas, herd sizes, yields'
(SET.R_EU15).'Build regional database'.'REGI0 database'.'NAME OF ORIGINATOR ORGANISATION' EURDSTAT

(SET.R_EU45).'Build regional database'.'REGIOD database'.'LANGUAGE WITHIN THE DATA SET' ENGLISH

(SET.R_EU15).'Build regional database'.'REGIO0 database'.'GEOGRAPHIC COVERAGE BY NAME' "EU at HUTS II lewvel®

(SET.R_EU15). Build regional database’.'REGIO database’.'TEMPORAL COVERAGE® 1975 - 2084

(SET.R_EU15). Build regional database’.'REGID database’.'DESCRIPTION OF PROCESS STEP® "RAW STATISTICAL DATA’

(SET.R_EU15).'Build regional database'.'REGID database'.'NAME OF PROCESSOR ORGANISATION' "ZINTL, EUROCARE BOHN'

(SET.R_EU15).'Build regional database'.'REGID database'.'DATE OF UERSION' 20086-12-05 11:05:59

I

29. Load data and parameters wherever possible as G =~ DX with META information
included in the META set which is passed along the production line.

SVN and testing

The software versioning system SVN allows us toknedficiently as a distributed team of
developers, especially to synchronize easily taciramon established code base and to
document changes to the code from version to versmdormation on TortoiseSVN, the

plug-in for Windows, can be found latttp://tortoisesvn.tigris.org/

30. Only commit fully functioning and tested code t o SVN.

Any exemptions must be made public beforehand emdubject to agreement of all others
involved. That holds especially for the trunk. Amgjor changes, especially those leading to
different results, should also be announced viZ@APRI mailing list.

Accompany your commit with a clear description wivas changed and why. If a whole
block of files is subject to your change, commérthif possible together. Avoid committing

whole bundles of unrelated changes with one commit.

If you introduce complex new features or refactdvsgantially existing code, provide a
separate short technical note to be uploaded oG ARRI web site which describes the
changes. Such a short note should comprise (19rarabtivationincluding references to
project deliverables etc., (2) whifites had been added (or changed), (3) a clear desgripti
of inputs and outputs, and (4) any unusual techsmation.

31. Update before committing!

Make sure that you have updated the files you aamommit, and do so before any tests, to

make sure that you are testing the latest availadigion.

