CAPRI Network

Reading Material for Training Session

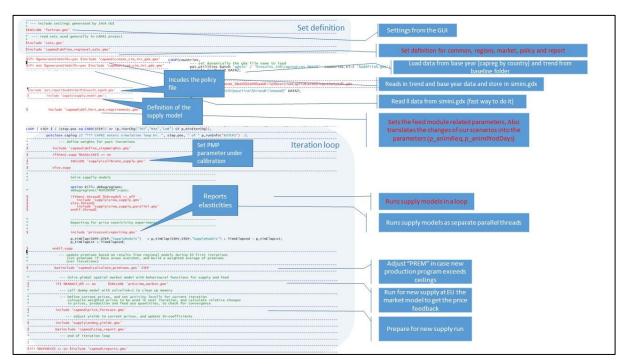
Jörg Rieger & Alexander Gocht

Thuenen-Institute of Farm Economics

Version Star 2.4, September 2019

Content

Introduction	. 2
The supply model in CAPRI	. 2
Objective function in the supply model of CAPRI	. 7
Important modules in the supply model exemplified by different scenarios	. 8
Supply balance Young animal balance	
Land balance	11
Feed balance	1/


Introduction

The aim of this document is to present the core supply model in CAPRI. Before we introduce the objective function and the restrictions, or equations, we shortly present the structure of the capmod.gms file as it is running when the simulation task "" is selected. Afterwards the structure of the objective function in CAPRI as well as important parameters, variables and equations are described. In the next part important modules in the supply model are shown and exemplified by different scenarios¹. The last part demonstrates how scenarios can be defined and examples are shown to improve the understanding of the computation of scenarios in CAPRI.

The supply model in CAPRI

In figure 1 the most important sections and key files of `\gams\capmod.gms' are depicted. In general there are two options to run capmod.gms, with and without the market model which can be selected in the GUI. First the settings from the GUI (\$include `fortran.gms') and the sets (\$include `sets.gms'; `capmod\define_regional_sets.gms') are included.

¹ In order run all the scenarios with the policy editor in the GUI correctly, the user has to download and use the recent trunk version of CAPRI.

Figure 1: Structure of the capmod.gms during task run simulation with and without market model

Then the data from the base year by country and the trends from the baseline folder are loaded and stored in 'simini.gdx'. Afterwards the policy file, the definition of the supply model (\$include 'supply\supply_model.gms') are included and the feed module related parameters are set (\$in-clude 'capmod\def_fert_and_requirements.gms').In the iteration loop the PMP parameters under calibration and the reporting of elasticities are included. If the market model is activated in the GUI (ifi %MARKET_M% = on) there is a run for the new supply (\$include 'arm\simu_market.gms') to get the price feedback from the market model which is further explained in figure 2.

As CAPRI is a comparative static equilibrium model and the supply models are solved independently at fixed prices, the link between the supply and market modules is based on an iterative procedure (see figure 2). The supply function of FT models is unknown (black). First any supply function can be assumed (red). Starting with some price, the supply is simulated with models and the assumed supply function is calibrated to that point. Then the supply and demand in the market model is solved simultaneously for a new price. After each iteration, during which the supply module works with fixed prices, the constant terms of the behavioural functions for supply and feed demand are calibrated to the results of the regional aggregate programming models aggregated to Member State level. Solving the market modules then delivers new prices. A weighted average of the prices from past iterations then defines the prices used in the next iteration of the supply module. This is repeated until convergence is achieved.

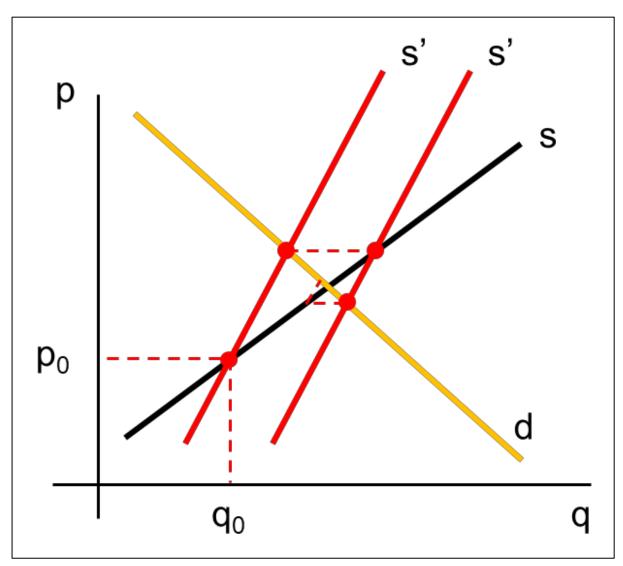


Figure 2: Comparative Static equilibrium in CAPRI

The most important parameters and model variables in the supply model are shown and described in figure 3.

	Amelicate Levender	def evenly medel and enely
2		<pre>\def_supply_model_par.gms';</pre>
-	Øpurpose : Define sets, parameters, var	iables etc. used in supply model
	PARAMETER	
-	p_nitrBalance(*,*)	Costs and revenues for activities not covered by constraints" "Nitrogen balance parameter" "Nitrogen balance parameter" "Shares of NVZ area in total and implementation shares for balanced fertilisation
	p_maxFeedShare(RALL,PACT,A,FEED %addtime p_minFeedShare(RALL,PACT,A,FEED %addtime p_animProdDays	<pre>edim_ast%) "Maximum shares dry matter intake for each feedingstuff" edim_ast%) "Minimum shares dry matter intake for each feedingstuff" 'Days per year in production system for animal activities"</pre>
	p_maxShareMinFert(RALL, PACT, *, FNUT)	'Minimum share of mineral on total fertilizer input" 'Maximum share of mineral on total fertilizer input" 'Nutrient retention from harvested material"
	p_feedQuant(*,* %addtimedim_ast%)	"Ammount of feed use in current aggregate to trim"
C	TREND p_PMPStep1	'If set to 1, allow LEVL.up = LEVL.lo in first PMP step"
	<pre>p_pmpQuadPact(RALL,COLS,COLS) p_pmpQuadLandTypes(RALL,COLS,COLS)</pre>	'PMP parameter for linear own area cost effect" 'PMP parameter for cross-crop-groups quadratic PMP effects" 'PMP parameter for land markets" 'PMP parameter for own area v_sumOfPmpTermsLevlstic cost effect"
-	model variables	
	VARIABLES	
	v_obje v_actLevl(RALL,COLS,*)	"Objective value" "Level of production activities in 1000 ha or 1000 heads"
	<pre>v_youngAnimUse(RALL,OM) v_feedQuantReg(RALL,* %addtimedim_ast v_feedInpCoeff(RALL,MAACT,A,* %addtir v_pmpCostFeedPerAnim(RALL,MAACT,A) v_netPutQuant(RALL,*)</pre>	"Intrasectoral use of young animals in 1000 heads" (%) "Regional feed use in 1000 t per year and herd" medim_ast%) "Feeding per head and year in kg" "Per unit PMP feed cost" "Selling and buying activities in 1000 t"
	<pre>v_lossQuant(RALL,ROWS %addtimedim_ast v_nutAvailFactExcr(RALL,FOUT,A) v_nutAvailFactCRes(RALL,FOUT,A) v_cropNutNeedWulFtact(RALL,FNUT,*) v_cropNutNeedAddFact(RALL,FNUT)</pre>	"Nutrient availability factor in manure" "Nutrient availability factor for crop residues" "Multiplative Nutrient need factor for crops, per region and technology" "Constant nutrient need factor for crops, per region"
	<pre>v_animReq (RALL,*,A,* %addtimedim_ast v_linObjePart(RALL) v_sumOfPmpTermsLev1s v_pmpCostLandMarket v_landSupCost(RALL) v_labCap(RALL)</pre>	"Requirements per head and day" "Linear part of objective" "Objective contribution of PMP terms activities" "Objective contribution of PMP terms feeding" "Objective contribution of land market" "Cost for supplying land to agriculture"
	v_CO2EquEmis(RALL,*) v_nutSurPlus(Rall,Fnut) v_minShareMinFertCorr(RALL,NGRP,FNUT)	"Global warming emissions" "Nutrient surpluses in 1000 tons" "Correction of minimum application rates of mineral fertilizer"
	<pre>v_fertDist(RALL,*,FNUT,*) v_ManureNPK(RALL,*)</pre>	"Distribution of organic and mineral N to groups of crops" "Total N,P,K at tail net of gaseous losses"
	<pre>v_watUse(RALL,*) v_watCos(RALL,*)</pre>	"Regional water use in 1000 m3" "Regional water cost in 1000 euros"
	v_SIGMSugb(RALL,A) v_cdfSugb(RALL,A,Qut_A_AB) v_pdfSugb(RALL,A,Qut_A_AB) v_sugbRev(RALL,A) v_salesSugb(RALL,A) v_fixCosts(RALL)	"Sales multiplied with VCOEF (??)" "Cummulative probability for the production to be lower then A or A+B quotas" "point probability for production being equal to A res. A+B quota" "Revenues from sugar beet A,B,C sales" "Sugar beet sales per technology" "Fix costs and premiums to generate compensated supply response"
	v_nonfSlack(RALL,A) v_corfSetr(RALL)	"Slack which allows to turn non-food into a unequality" "Correction factor to render set-aside binding"

Figure 3: Parameters and variables of the supply model in CAPRI

In figure 4 the linear part of the model including the equations (constraints) for animal feed requirements (feeding block, see table 1), the constraints relating to fertilisation such as the nutrient need balance for group of crops (NUTNED_), minimum use of mineral fertilizer (NUTMIN_), distribution of total nutrients from crop residues and atmospheric deposition to crop groups (fertDistCres), distribution of mineral fertilizer to crop groups (fertDistMine_), distribution of nutrients from manure to crop groups (fertDistExcr_) and the total manure output of animals (ManureNPK_). In addition constraints relating to the cost function and set-aside are included.

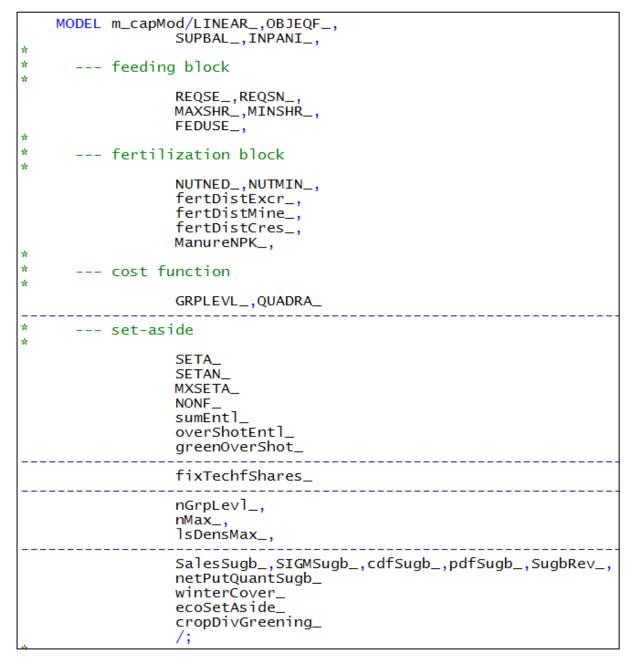
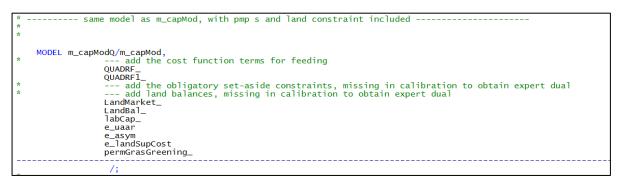
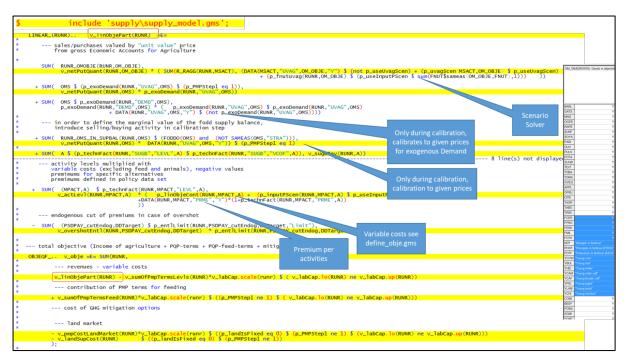



Figure 4: Linear part of the supply model in CAPRI

In Figure 5 the non-linear part (PMP) of the supply model is depicted. The non-linear cost function allows for a calibration of the models and a smooth simulation response rooted in observed behaviour. Here the cost function terms for feeding including the PMP per feed and head (QUADRF) and PMP for feed use per region, activity and technology (QUADRF_1) as well as for the land market (LandMarket_), land balance (LandBal_) and a non-linear cost function which captures the effects of labour and capital on farmers' decisions (labCap_) are included.


Figure 5: Non-linear part of the supply model in CAPRI

Objective function in the supply model of CAPRI

The supply side models of the CAPRI simulation tool are programming models with an objective function. In general there are two sources for interactions between activities in simulation: the objective function and constraints. In CAPRI, the objective function does solve interactivity terms for groups of arable crops, so that the major interplay is due to constraints.

The objective function is split up into the linear part and the one relating to the quadratic cost function for activities and the quadratic cost function relating to the feed mix costs. The linear part (LINEAR_) comprises the revenues from sales and the costs of purchases valued by "unit value" price from EAA, minus the variable costs of allocated inputs not explicitly covered by constraints (i.e. all inputs with the exemptions of fertilisers, feed and young animals) plus premiums and minus endogenous cut of premiums in case of overshot of entitlements. The objective function (OBJEQF_) sums up the linear and quadratic costs for activities. The target variable is v_obje in OBJEQF_.

Figure 6: Objective function in the supply module

In Table 1 detailed information about the relevant equations, variables and parameters or scalars needed to understand the working principle of the objective function is provided. The exact meaning of the abrevations in this table is shown in figure 3.

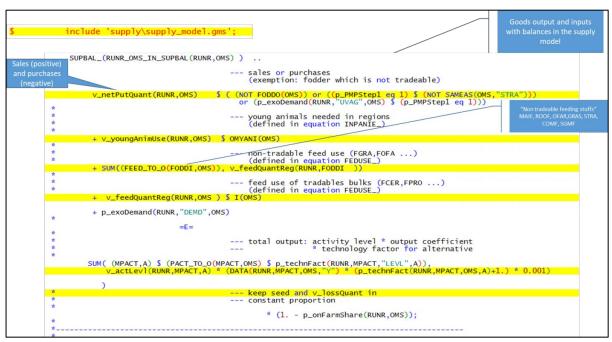

Area	Equations	Variables	Parameters or scalars
Objective Function	LINEAR_,	v_linObjePart	Premium:
		v_overshotEntl	DATA(RUNR,MPACT,"PRME","Y")
		v_actLevl	Premium loss when overshot:
		v_netPutQuant	p_entlLimit(RUNR,PSDPAY_cutEndog, DDTarget,"Cut")
			Price:
			DATA(MSACT,"UVAG",OM_OBJE,"Y")
			Switch for scenario solver:
			p_useUvagScen:
	OBJEQF_	v_linObjePart	
		v_sumOfPmpTermsLevIs	
		v_labCap	
		v_sumOfPmpTermsFeed	
		v_pmpCostLandMarket	
		v_landSupCost	

Table 1: Equations, variables and paramters or scalars for the objective functionand the feeding block in CAPRI

Important modules in the supply model exemplified by different scenarios

Supply balance

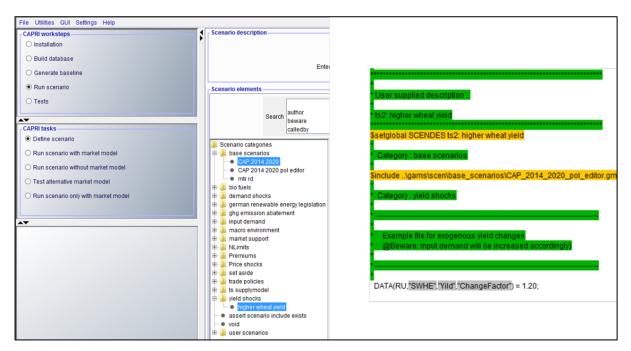

One important module in CAPRI is the supply balance for final outputs. Here the sales and purchases (v_netPutQuant) plus the young animals needed in the regions, the tradeable and non-tradeable feeding stuffs and exogenous demand (e.g. bio energy production) have to be equal to the total output which is calculated by multiplying the activity level with the output coefficient and the technology factor (see figure 7).

Figure 7: Supply balance for final outputs in CAPRI

One possible scenario relating to the supply balance for final outputs is to modify the yield for a specific production activity. This can be done by modifying the parameter DATA(RUNR,MPACT,OMS,"Y") (see figure 7 and table 2). Here an increase of wheat yield about 20% is simulated Data(RU,"SWHE","Yild",ChangeFactor")=1.20;) which shown in figure 8.

Figure 8: Scenario – Wheat yield increase by 20%

Using the exploiter in the GUI (see figure 9) the results of the scenario (res_2_1230useScens_ts2) can now be compared to the baseline (re_2_1230userScens_nochange).

Figure 9: Selection of baseline scenario (nochange) and yield increase scenario (ts2)

- CAPRI worksteps	Result exploitation			
O Installation			Scenario 1	res_2_1230ts_yield_increase
⊖ Build database		DK "Denmark"	Scenario 2	res_2_1230cap_after_2014_ref
O Generate baseline		FR "France" AT "Austria"	Scenario 3	
Run scenario Tests		UK "United Kingdom" SI "Slovenia"	Scenario 4	
		LV "Latvia" RO "Romania"	Scenario 5	
- CAPRI tasks		MK "Macedonia" BA "Bosnia and Herzegovina"	Scenario 6	
O Run scenario with market model			Scenario 7	
Run scenario without market model		nal level 029	Scenario 8	
O Test alternative market model	Base year	selection 04 08 10 12	Scenario 9	
O Run scenario only with market model		00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	Scenario 10	
		16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Scenario 11	
	Simulation year se	lection 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Scenario 12	
		48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Scenario 13	
		64 65 66 67 68 69 70	Scenario 14	
			Scenario 15	

Looking at the results in the CAPRI exploiter (see figure 10) shows that the yield increase about 10% for cereals Denmark and a resulting higher income for this crop group.

🛃 Supply details [0]]						
R	egion				Year		
	enmark			Ý	2030		¥
	*	ts_yield_increase			cap_after_2014_r	ef	
¥	2	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Yield [kg, Const EU or 1/1000 head/ha]	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Yield [kg, Const EU or 1/1000 head/ha]
Cereals		- 206.08 1.54%	1250.20 -0.47%	1180.79 7.17%	-209.31	1256.13	1101.84
Soft wheat		- 327.95 1.15%	429.81 -3.39%	8776.77 18.52%	-331.77	444.87	7405.09
Oilseeds		- 238.06 -0.19%	160.05 0.42%		-237.61	159.38	1536.44
Other arable crops		- <mark>26.93</mark> -25.69%	100.30 0.65%		-21.43	99.66	4162.02
Vegetables and Per	rmanent crops	26655.41 -0.01%	20.70 0.01%		26657.46	20.70	38738.23
Fodder activities		96.72 -0.94%	904.80 0.22%		97.64	902.80	1057.68
Set aside and fallow	w land	321.69 0.01%	160.65 1.65%		321.66	158.04	
All cattle activities		712.64 0.16%	2008.36 0.03%	2101.22 -0.01%	711.47	2007.84	2101.50
Beef meat activities	S	- 298.71 0.31%	540.84 0.05%	698.68 -0.03%	-299.63	540.58	698.89
All Dairy		1085.37 0.13%	1467.52 0.02%	2618.12 -0.01%	1083.99	1467.26	2618.26
Other animals		295.12 0.00%	3103.16 -0.00%	1788.73 0.00%	295.12	3103.16	1788.73

Figure 10: Yield an income changes for wheat yield increase by 20%

Young animal balance

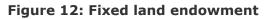
Another important module is the young animal balance (see figure 11). Here the sum of young animals needed by the respective region have to be equal to the total need added

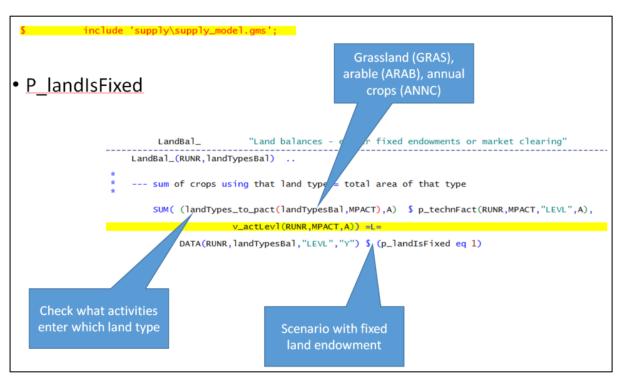
over activities and alternatives. The EAA requires a distinction between young animals as inputs and outputs, where only the net trade is valued in the EAA on the output side. Consequently, demand for young animals (e.g piglets for pig fattening activity) must be covered by young animals produced from other production activities like sows or are imported from other regions. In Table 2 the corresponding equations, variables and parameters or scalars are shown.

Figure 11: Young animal balance

5	include 'supply\supply_model.gms';
* *	adding up use of young animals
4	INPANI_(RUNR,IYANI) \$ SUM (0_T0_YANI(OMYANI,IYANI) \$ (v_youngAnimUse.lo(RUNR,OMYANI) ne v_youngAnimUse.up(RUNR,OMYANI)),1)
* * * *	young animals needed by region RUNR
	SUM (0_T0_YANI(OMYANI,IYANI), v_youngAnimUse(RUNR,OMYANI))
* * * *	=E= total need added over activities and alternatives
*	0.001 * SUM(MAACT \$ (p_technFact(RUNR,MAACT,"LEVL","T") \$ PACT_TO_I(MAACT,IYANI)),
	v_actLev1(RUNR,MAACT,"T") * DATA(RUNR,MAACT,IYANI,"Y") * (p_technFact(RUNR,MAACT,IYANI,"T")+1.)
×);

Table 2: Equations, variables and parameters or scalars for the balance of products and young animals in CAPRI


Area	Equations	Variables	Parameters or scalars	Exercise from
				the policy
				editor
Balance of products	EQU SUPBAL_	v_netputQunt	Yields	Yield, Young
and young animals	Supply balances for	v_YoungAnimU	DATA(RUNR,MPACT,OMS,"Y")	animal input
	final outputs	se	young animal requirements	p_exoDemand
	EQU INPANI_ Input	V_feedQuantR	DATA(RUNR,MAACT,IYANI,"Y")	
	balances for young	eg	p_exoDemand	
	animals regional	V_actLevl		


Land balance

A central role in the CAPRI supply model plays the land balance. Its shadow price appears as a cost in all crop activities including fodder producing ones, so that animals are indirectly affected as well. The second major link is the availability of not-marketable feeding stuff, and finally, less important organic fertiliser. The model comprises a land use module with two major components:

- Imperfect substitution between arable and grass lands depending on returns to the two types of agricultural land uses.
- A land supply curve which determines the land available to agriculture as a function to the returns to land.

If the land endowment is fixed or not meaning if arable land can be substituted with grass land depends on p_landIsFixed (see figure 12). If land is fixed, so no substitution between arable and grassland, the parameter p_landIsFixed = 1.

Table 3: Equations, variables and parameters or scalars for the land balance in CAPRI

Area	Equations	Variables	Parameters or scalars
Land Balance	LandBal_	v_actLevl(Landtypes,"LEVL")	p_landisfixed
	Fixed endowment of market		DATA (RU, landtypes,
	clearing		"Levl","Y")

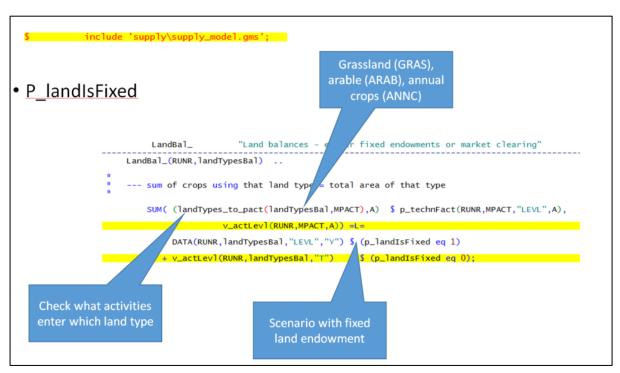
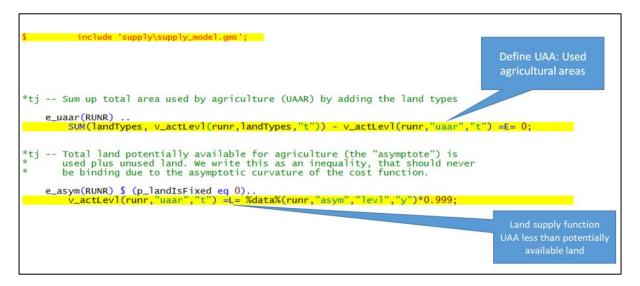
A possible scenario for the land balance module is the change of available arable land. Here the arable land availabe is reduced by 10%. This is achieved through DA-TA(RU,"ARAB","LEVL","ChangeFactor") =0.90; (see figure 13).

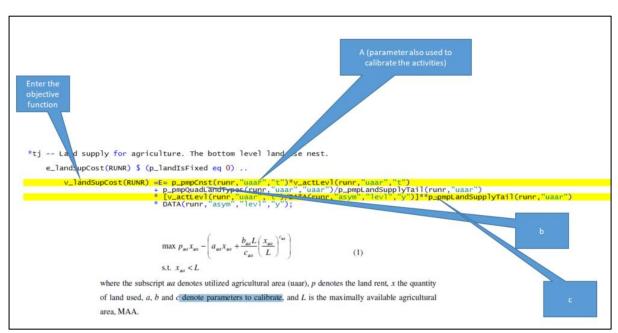
Figure 13: Scenario - Reduction of available arable land by 10%

The results of this scenario are shown in figure 14. It can be seen that the scenario (ts9) results in lower total UAA, lower arable land and reduced agricultural activities. In addition the income and supply effects for arable crops are shown for different crop groups. This scenario is only working with the recent trunk version and yet with STAR 2.4.

🛃 Supply details [0]			🛃 Supply details [0]				
Region			Region				Year
Denmark			Denmark				✓ 2030
	nochange	ts9	5	nochange		ts9	
	Hectares or herd size [1000 ha or hds]	Hectares or herd size [1000 ha or hds]	x X	Income [Euro/ha or head]	Supply [1000 t, 1000 ha or Mio Const FIII	Income [Euro/ha or head]	Supply [1000 t, 1000 ha or Mio Const EU]
Utilized agricultural area	2640.71	2403.73	Cereals	257.58	1644.16	269.93 4.80%	1426.48 -13.24%
		-8.97%	Oilseeds	474.62	246.22	483.04 1.78%	203.48 -17.36%
Pasture	270.90	270.90 0.00%	Other arable crops	-76.58	394.41	- 103.69 -35.40%	410.10 3.98%
Arable land	2369.81	2132.83 -10.00%	Vegetables and Permanent crops	41484.92	1190.00	41677.12 0.46%	1188.44 -0.13%
All agricultural activities	6772.36	6551.00 -3.27%	Fodder activities	203.79	872.09	117.83 -42.18%	

If the land endowment is not fixed (p_landIsFixed = 0) this results in market clearing (see figure 15). For more detailed information see "\doc\landSupplyCAPRI_v5.pdf". This means that the land potentially be used by agriculture is allocated between agriculture and other land uses. At the second level the regional representative farm decides how to allocate total land supplied to: arable and grass land {arab, gras}. The heterogeneity of land is reflected in a concave cost curve for increasing the allocation to the two land types (see figure 16). The representative farm optimizes the land allocation by maximizing the total land rent across land types minus the cost of allocating it to each land type.


Figure 15: Market clearing in the land balance module of CAPRI

In Figure 16 "asym" is the land asymptote i.e. the maximal amount of economically usable agricultural area in a region. In the first equation (e_uaar(RUNR)) the total area used by agriculture for a region is defined and the second equation (e_asym(RUNR)) ensures that the land supply for UAA is less than the potential availabe land.

Figure 16: Constraints to potentially used land for agriculture

It is clear that changes in land allocation also generates costs for the farmer. The costs can stem from the supply of UAA and the transformation of land (e.g. grass land to arable land). In figure 17 the costs calculation for the supply of land and in figure 18 (see also table 4) the costs for transforming land types are showed (see "\doc\landSupplyCAPRI_v5.pdf" for further details).

Figure 17: Costs for supply of land in CAPRI

Figure 18: Costs for transforming land types in CAPRI

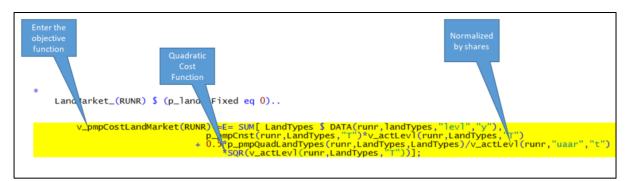


Table 4: Equations, variables and parameters or scalars for the land balance in CAPRI

Area	Equations	Variables	Parameters or scalars
Land Balance	LandMarket_ see also OBJEQF_	V_actLevel(landtypes) V_actLevel("UAA")	p_landisfixed=1 DATA (RU, "Asym", "Levl","Y") p_pmpCnst(LandTypes) p_pmpQuadLandTypes(landtypes)

One potential scenario for market clearing is an increase in available land for UAA by 10% which is depicted in figure 19. As mentioned before "asym" is the land asymptote hence the maximal amount of economically usable agricultural area in a region which has to be increased DATA(RU,"ASYM","LEVL","ChangeFactor")=1.10, here by 10%.

Figure 19: Scenario: Change in available land for UAA (+10%)

The income and supply effects on land are shown in figure 20.

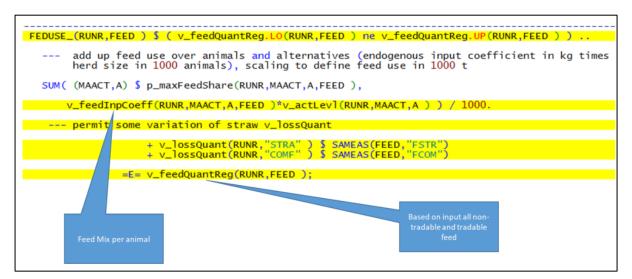
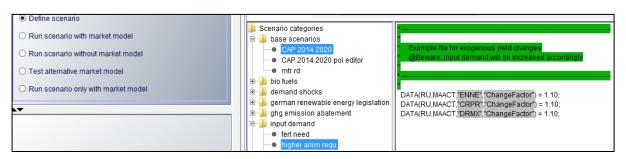

🔮 Supply details [0]				
Region				Year
Denmark				✓ 2030
2	ts_Reduction_UAA		cap_after_2014_ref	
¥ N	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]
Oilseeds	-267.19	173.47	- 237.61 11.07%	159.38 -8.12%
Other arable crops	-21.66	97.44	- 21.43 1.06%	99.66 2.27%
Vegetables and Permanent crops	26571.63	20.75	26657.46 0.32%	20.70 -0.26%
Fodder activities	60.20	918.93	97.64 62.18%	902.80 -1.76%
Set aside and fallow land	301.24	236.55	321.66 6.78%	158.04 -33.19%
All cattle activities	718.32	2007.12	711.47 -0.95%	2007.84 0.04%
Beef meat activities	-293.84	540.20	- <mark>299.63</mark> -1.97%	540.58 0.07%
All Dairy	1091.06	1466.91	1083.99 -0.65%	1467.26 0.02%
Other animals	295.15	3103.12	<mark>295.12</mark> -0.01%	3103.16 0.00%

Figure 20: Results: Change in available land for UAA (+10%)

Feed balance

The feed module for animals is another important module for the supply model as it ensures that the requirements of the animal processes are met that these are linked to the markets and crop production decisions. In figure 21 it is shown that the feeding mix per head and kg (v_feedInpCoeff) has to be equal to the regional feed use in 1000t per year and hectar (V_feedQuantReg) based on ainput of all non-tradable and tradable feed.

In figure 22 the animal requirements e.g. crude protein(CRPR), dry matter (DRMA), energy re-quired for net lactation (ENNE) which are covered by cost minimised feeding combination are shown.

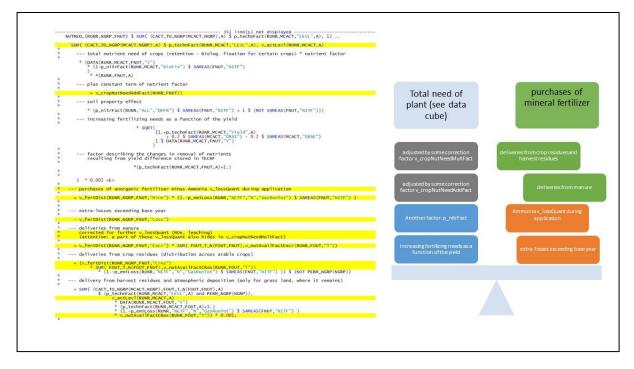


	As requirement are per day multiply with no of production cycle of animals
REQSE_	"Requirements of animals ten as equality"
REQSE_(RUNR,MAAC	T,A,REQMSE) \$ (p_ani_aeq(RUNR,MAACT,A,REQMSE) \$technFact(RUNR,MAACT,"LEVL",A))
*	UNR,MAACT,A,REQMSE)
	ProdDays (RUNR, MAACT, A)
* - SUM (FE	are covered by feeding of feedingstuff ED \$ p_maxFeedShare(RUNR,MAACT.A,FEED),
	<pre>v_feedInpCoeff(RUNR,MAACT, A, FEED) * SUM(R_RAGG(RUNR,MSACT), DATA(MSACT, REQMSE, FEED, "V")) ENNE and CPRO content</pre>
* =E= 0.0	of feed at MS
=E= 0.1	0 ,
REQSN_	"Requirements of animals written as in-equality"
REQSN_(RUNR,MAACT	<pre>,A,REQMSN) \$ (p_animReq(RUNR,MAACT,A,REQMSN) \$ p_technFact(RUNR,MAACT,"LEVL",A))</pre>
[(v_animReg(R)	animal requirements per activity level and day UNR,MAACT,A,REQMSN) \$ p_trimFeed + p_animReq(RUNR,MAACT,A,REQMSN) \$ (Not p_trimFeed))
	edInpCoeff(RUNR_MAACT_A_FEED)
=L= 0.(num shares Convert into dry matter Multiply share
=L= 0.(* SUM (R_RAGG (RUNR, MSACT), DATA (MSACT, REQMSN, FEED, "Y")))] 0; mum shares CT, A, FEED) \$ ((p_maxFeedShare(RUNR, MAACT, or) NE, pre(RUNR, MAAC) CT, A, FEED) \$ ((p_maxFeedShare(RUNR, MAACT, or) NE, pre(RUNR, MAAC)
=L= 0.(for maxim MAXSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED,"Y")))] 0; mum shares Convert into dry matter TT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT) NE current tot-fory matter intake * maximum share current tot-fory matter intake * maximum share current tot-fory matter intake of feedingstuff FEED NR,MAACT,A,"DRMA") corrector factor for maximum shares * ((I+y_animReq(RUNR,MAACT,A,FEED)) \$ p_trimFeed + 1, \$ content of the feed</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED, "Y")))] mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT >>>> NE ===============================</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED,"Y")))] o; mum shares Convert into dry matter Tre(RUNR,MAACT Convert into dry matter Convert into dry matter Tre(RUNR,MAACT Convert into dry matter Convert into dry ma</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED,"Y")))] o; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT, or) NE</pre>
=L= 0.0 for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED,"Y")))] O; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT, or) NE</pre>
=L= 0.0 for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED,"Y")))] O; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT, or) NE</pre>
=L= 0.0 for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED, "Y")))] O; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT_0_0_P_NE</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN for minim MINSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED,"Y")))] O; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT, or) NE</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN for minim MINSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED, "Y")))] O; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT_ROTINE</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN for minim MINSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED, "Y")))] o; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT_OP) NE re(RUNR,MAACT</pre>
=L= 0.(for maxim MAXSHR_(RUNR,MAAC p_animReq(RUN for minim MINSHR_(RUNR,MAAC	<pre>* SUM(R_RAGG(RUNR,MSACT),DATA(MSACT,REQMSN,FEED, "Y")))] O; mum shares CT,A,FEED) \$ ((p_maxFeedShare(RUNR,MAACT_ROTINE</pre>

Here the net energy requirements (per unit of activity level) for maintenance, daily activity, growth, lactation and pregnancy are calculated and the gross energy intake is derived from the energy requirements and digestibility factors. For more detaqiled information see \docs\Docu_CH4ENT.docx and \docs\capri_documentation.pdf ,pages 123-124.

Regarding animal feed requirements a potential scenario would be the increase of the animal feed requirements by 10% for net energy lactation ("ENNE"), crude protein ("CRPR"), and dry matter max ("DRMX"). The necessary changes in the policy editor are demonstrated in figure 23.

Figure 23: Scenario - Higher animal feed requirements +10% (for net energy lactation ("ENNE"), crude protein ("CRPR"), dry matter max ("DRMX")

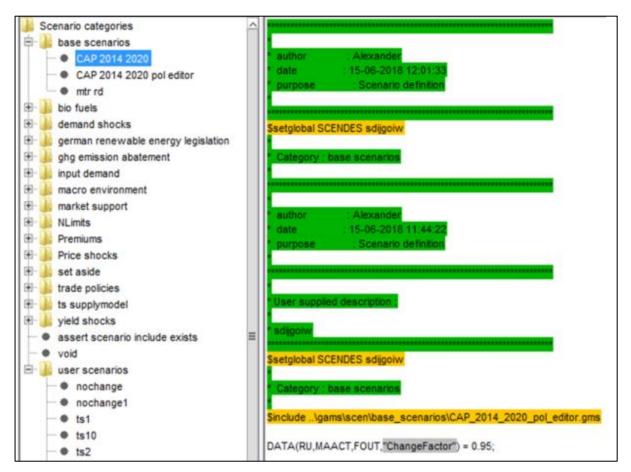

As expected the scenario results in figure 24 show an increase in the necessary feed requirements for animals (feed cereals, protein, energy, fodder maize). In addition the herd sizes decrease, the income for animal production decreases and the income for fodder crops increase due to the increased feeding requirements of animals.

🛓 Feed Distribution	[0]										
	gion						Year				
	nmark						× 2030				
5	ts_feed_require	ements				cap_after_20	14_ref				
¥K	Feed cereals [kg/head]	Feed ricl [kg/head		Feed rich energy [kg/head]	Fodder maize [kg/head]	Feed cereals [kg/head]		Feed rich energy [kg/head]	Fodder maize [kg/head]		
All cattle activities	949.85		406.06	5.3	5 8261.59	810.6 1 -14.66%		5.27 -1.50%			
All Dairy	1107.88		472.87	5.14	4 8836.59	957.84 -13.54%		5.08 -1.13%			
Other animals	2278.06		907.49	18.6	36.33	2070.68 -9.10%		18.48 -0.65%			
🛓 Supply detail	s [0]										
	Region								Year		
	Denmark							~	2030		
		Y	ts_fee	d_requirement	s		cap_after_2014	_ref			
¥		•	Incom [Euro/I	e ha or head]	Hectares or h [1000 ha or h		Income [Euro/ha or head		or herd size or hds]		
Oilseeds				-237.40		159.03	-237 -0.0	7.61 09%	159.38 0.22%		
Other arable crops			-24.70			100.04		1 .43 26%			
Vegetables and Permanent crops			26656.12			20.70	26657 0.0	.46 20.70 11% -0.01%			
Fodder activities				120.75		909.60	<mark>97</mark> -19.1	7. <mark>64</mark> 14%			
Set aside and fallow land			321.71			159.76		321.66 158.0 -0.01% -1.074			
All cattle activities			610.09			1856.13		1.47 2007 .62% 8.1			
Beef meat activities			-393.02			466.15	- 299 23.7				
All Dairy	All Dairy			946.50		1389.98	1083 14.5				
Other animals	198.66			2845.37	295	12 3103.16 5% 9.06%					

Figure 24: Results: Higher animal feed requirements (+10%)

Fertilizer balance

The fertilizer balance is the last module of the supply model presented in this document. In CAPRI, fertilisers are available from three different sources, namely from purchased mineral fertiliser, animal manure and crop residues. Fertilisers in animal manure produced per animal per head per year depend on the type of animal, the raising period in number of days and the kg live weight at the start and the end of the raising period. The nitrogen emission factors from animal activities are coupled to crude protein intake. As shown in figure 25 the total nutrient need of plants (NUTNED_) –minus biological fixation for pulses– multiplied with a factor describing fertilisation beyond exports must be covered by: (1) inorganic fertiliser, corrected by ammonia losses during application in case of N, (2) atmospheric deposition, taking into account a crop specific loss factor in form of ammonia, and (3) nutrient content in manure, corrected by ammonia losses in case of N, and a specific availability factor. The relevant equations variables, parameters or scalars are depicted in Table 5.


Table 5: Equations, variables and parameters or scalars for the fertilizer balance in CAPRI

Area	Equations	Variables	Parameters or scalars
Distribution of	fertDistMine_	v_fertDist(RUNR,NGRP,FNU	No
mineral and organic	ineral fertilizer	T <i>,</i> "Mine")	
fertilizer to crops	distributed to group	v_netPutQuant(RUNR,FNU	
	of crops must	Т)	
	exhaust total mineral		
	N sales		
	NUTNED_		Nutrient factors:
	nutrient need		p_nitrFact
	balance for group of		v_cropNutNeedAddFact
	crops		v_cropNutNeedMultFact
			Nutrient need of crop:
			DATA(RUNR,MCACT,FNUT,"Y")
	NUTMIN_	v_actLevl(MCACT)	p_minShareMinFert(MSACT,MCACT,A,FN
	Minimum use of		UT)
	mineral fertilizer	v_fertDist(RUNR,NGRP,FNU	v_minShareMinFertCorr
		T,"Mine")	DATA(RUNR,MCACT,FNUT,"Y")
			p_nitrFact

mapping	fertDistExcr_	excrements distributed	
	Total crop available	summed up over crop	
	nutrients from	groups	
	manure must be		
	distributed to		
	different crop groups		
mapping	fertDistCres_	Only non permanent	DATA(RUNR,noPermCact,FOUT,"Y")
	Total nutrients from	v_actLevl(nonPermAct)	
	crop resiudes and		
	atmosperic		
	deposition must be		
	distributed to		
	different crop groups		
mapping	ManureNPK_	v_ManureNPK	v_ManureNPKintraTrade
	Definition of total	v_actLevl(RUNR,MAACT	DATA(RUNR,MAACT,FOUT,"Y")
	manure output of		p_emiLoss
	animals		

One thinkable sceanrio would be the reduction of manure output from animals by 5%. The necessary changes in the policy editor are shown in figure 26. MAACT are the animal production ac-tivities and FOUT is the output of N,P2O,K2O from animals which is reduced by 5%.

The results in figure 27 show that CH4, N2O emissions and ammonium output is reduced and the EAA value of manure and related nutrients is reduced. This scenario is only working with the recent trunk version and not with STAR 2.4.

Figure 27: Results - Reduction of manure output from animals by 5%

🔬 Manure outpu	t per animal (0)												
	Region Year F Denmark 2030 v											D	- 4 G
	Nitrogen Phospate [kg N / head or 1000 heads] [kg P205 / head or 1000 heads]			Potassium					Phospate [kg P2O5 / head or 1000 heads]			Potassium [kg K2O / head or 1000 heads]	
All cattle activitie	IS	110		66		143	1	104 -5%			-5	\$3 %	
All Dairy		114		69		145		109 -5%			.5	95 %	
Other animals		57		23		23		54 -5%			2 -5	22 %	
Environmenta						Economic	Accounts for Agric	ulture [0]					
Region Demark			Year 2030			Region Denmark					Year		
		Total Amount per ha		ts_4_man1 Total Amount per ha		1			3 nochange		ts_4_man1		
•		[in 1000t]	[in 1000t/ha]	[in 1000t] 572.5	[in 1000tha]	¥			7	Gross EAA value [Mio Euro]		Gross EAA value [Mio Euro]	Quantity [1000 t]
GHG emissions f CO2 equivalents	rom agricultural input industries in			5.90	% 5.90%					funo coroj	[1000 t]	funo curoj	finned
Ammonium outp			63.75	60.8 -4.58	s.	Manure phos	pate			548.39	209.71	529.00 -3.54%	
CH4 Total emissi			18.24 6.91	-0.30	% -0.30%	Manure outpu	ıt			1622.07	1151.78	1571.69	
N2O Total emiss			41.74 -2060.71	-2.43	% -2.44%	Manure nitrat	e			648.98	506.81	629.15 -3.05%	491.33
LOZ TOTAL ETHISS	DAT D			0,641		Manure potas	sium			424.70	435.25	413.53	