
Parallel processing in GAMS

– how it is used in CAPRI

- Wolfgang Britz, September 2010 -

Background and motivation

Since a few years, increases in CPU speed have slowed downed, while computers with 

several CPUs have become quite common. Using several CPUs for one task is called parallel 

processing. So far, the GAMS base engine does not support parallel processing. Especially the 

farm type layer in CAPRI requires a lot of computing power to solve the close to 1.900 

independent supply models and calculate indicators from their results. As many users now 

have access at least 4 core desktops or even to 8 core computing servers, it seems appropriate 

to analyse and test the feasibility of parallel processes.

Case 1: two GAMS processes, not output collection

That case is now widely used in CAPMOD, but also in CAPREG. It is e.g. integrated in 

CAPREG which generates two outputs. Firstly, a GDX file with time series results. There is a 

huge block of calculations, such as aggregating from single products to activities to groups, 

where results are not further used in CAPREG itself. Instead, there are only of interest to the 

user. These calculations are now performed in a separate GAMS program termed 

CAPREG_TIME_SERIES. It is started by CAPREG by the following sequence:

The first statement (execute_unload) stores all time series results from CAPREG into a GDX 

files to be read by the second process. Next, it generates a small file on disk which allows 

checking later if the second process has terminated. The third statement deletes a test output 



to be generated by the second process. Should the process not compile without error or 

terminate at run time, it will not generate that file, and the “mother” process CAPREG can 

raise an error. Finally, a separate GAMS process is started. The process is also depicts in the 

following diagram.

CAPREG GDX

CAPREG
Time series

Generates

Starts

Time
Series
GDX

Base
year
GDX

The following code piece shows the final sequence to make sure that the second process 

terminated successfully before CAPREG is started for the next country:

“TaskSunc.bat” is a very simple command program which runs a loop in which it checks if a 

file or group files exists. If the file(s) do not exist(s), it returns. It will do so for a maximal 

time (in our case for 4 minutes). The final check consists in try to load a scalar from the test 

GDX file.

A similar, easier application is applied in CAPMOD for the generation of the iteration log:



In that case, the results are only for controlling at run time – it is not necessary to break the 

master process if an error in the child process occurs.

Case 2: Independent GAMS processes for model 

generation

The third case combines the two cases above, and adds some more complexity. It is used to 

solve the many supply models from the farm type layer. It consists of three major elements:

1. A loop which generates a separate GAMS process for a range of region / farm types 

belonging for one country in the main CAPMOD process (see 

supply\simu_supply_grid.gms). Each region is called cluster in the following.

2. Cluster specific GAMS processes: they solve the individual model instances for each 

region / farm types and collect their result. The results are stored in a GDX file.

3. A collection loop in the main CAPMOD process which collects the solutions from 

these GDX-files.

As a first step, the clusters are defined (see below). The “genModel” (for generateModels) 

set stores the lists of cluster of regions to generate. To each cluster, a country is attached 

(genModel_to_MS) as well as a list of regions / farm types (genModel_to_RU). The 

cluster will comprise up to 20 NUTS2 or up to 30 farm types. The differentiation is 

introduced as (1) the farm type models comprise typically fewer non-zero activities, and 

(2) the processes need to load larger data sets in case of the farm types.



Next, we generate the process directories and define GDX files comprising the definition 

set for each model. That step is necessary only once. The MS-specific directories used in 

the reporting part are also generated here:



The next step generates a GDX comprising all symbols used in the supply model:

As in the case of CAPREG; that GDX will be inputted by the “child” processes

(generate_supply_model.gms). In order reduce processing time, the child process does not 

use the regular “RALL” definition where all regions are comprised, but defines its own 

“RALL” as an alias to the regions it handles loaded from a cluster specific GDX file:

The “execute_load” in the child process statements works then like a filter, loading only 

the part of the symbol referring to that country. Doing so saves memory in the child 

processes and helps speeding them up:

The processing part of the child processes is seen below:



At the end of that loop, each child process generates its own result file and deletes the flag 

of which the presence indicates that it is still running:

The master process starts these child processes in a loop as seen below. Before doing so, it 

generates for each child process a flag file which indicates that the process is working:

In practical terms, several dozen GAMS processes will run in parallel on the machine and 

will generate models. These models will be solved all in parallel by the different CPUs 

available. The “master process” (CAPMOD) solves for the countries which comprise only 

a few regions / farm types.

Finally, the master process waits until all flag files are delete (i.e. the child processes are 

finished), and loads in a loop the results and finally, deletes the results.




