4 . > 6 7 8 0.0 × 4 6 ÷ 8 90 7890123%45 2 3 4 5 6 8 9 <mark>0 1 2 3 x 4 5 6</mark> 7 8 9 0 89 890123-456 economics centre <

Modelling CAP reform and land abandonment in the European Union with a focus on Germany

Presentation in Edinburgh, March 30, 2010. Authors: Torbjörn Jansson (SLU, Sweden) Wolfgang Britz (Bonn University, Germany) Peter Verburg (FU Amsterdam, The Netherlands) Alan Renwick (SAC, Scotland)

Land use is dynamic

- Grassland and arable 4500
 land develop differently 4000
- Ag. land use "peaked" around 1900
- Similar in other developed countries
- "Forest transition"

Swedish ag land use 1865-2009

----------------------Grassland

Notes: from 1969, only farms with at least 2 ha are accounted for. 1937 to 1956 definitions of grassland changed. Source: Statistics Sweden, various issues.

Land is heterogeneous

Potential yield index for arable crops

Distribution of potential cereals yields in Germany, all km² aggregated (Source: Dyna-CLUE model).

Land is limited

Additional potential agricultural land available

Distribution of relative land buffers across regions in EU + Turkey and Balkans (Own computations).

Land use and policy

Key research questions

- What does reduced first pillar support mean for agricultural land use?
- <u>Where</u> might we expect problems with "undesirable" land abandonment?
- Which counter measures could be efficient?

Method and data

- Land supply elasticities from lit. (LEITAP)
- Land transformation elasticities from lit. (GTAP-AEZ)

 $''\Delta x/x = \eta \star \Delta \lambda/\lambda''$

- Use ag. sector model for land-rent impacts
- Use land use model for spatial allocation

Agricultural sector model: CAPRI

- <u>Common Agricultural</u> <u>Policy Regional Impact</u>
- EU 27+ at NUTS2 level
- Technology rich Fertilization

 - FeedingYoung animals
- Detailed representation of pillar I payments
- Pillar II:
 - Less Favoured Areas
 - Natura 2000
 - Agri-Environment
- National aid

Agricultural sector model: CAPRI

- Market model for price response
- Bilateral world trade with policies

Land supply function Germany

Land supply function UK

12

Land supply function Sweden

Regional land supply elasticities

- Simulations with Dyna-CLUE
- MS-effect plus alternative LU
- Forest-rich MS less elastic

Direct subsidies in Germany (MEUR)

- Payments reduced by 4.8 billion EUR annually in 2020
- Pillar II only contains
 - LFA
 - Natura 2000
 - Agri-Environment

	Base	NoPil1
Pillar I	4814	0
Pillar II	1040	1041
State aid	0	0
Total	5853	1041

Table 1: Total CAP payments in Germany in different simulations for 2020 (million EUR). (simulation results)

Land rents and land use in Germany

- Payments capitalize on land (in our model)
- Payments removed
- Land rents drop

	Base	NoPil1	% diff
Land rent	229	114	-50%
Land use			
(1000 ha)	17504	15718	-10%

Table 2: Land rents (EUR/ha) in Germany in different simulations for 2020. (simulation results)

Producer prices (similar in all EU countries)

- Less supply, higher prices
- In particular: Arable crops
- Meat prices affected via feeding costs

Table 3: Producer prices (EUR/t) in simulations for 2020 in different scenarios. (Simulation results)

	Base	NoPil1
Cereals	132	7.6%
Oilseeds	229	8.1%
Other arable field crops	44	10.1%
Veg. and Permanent crops	739	0.6%
All other crops	1454	0.0%
Fodder	17	-0.1%
Beef	1806	4.9%
Sheep and goat meat	4494	2.3%
Poultry meat	1436	3.0%
Other Animal products	563	0.8%
Young animals	76	6.3%

Regional land use change in Germany

Regional land use change in the UK

19

Agricultural abandonment and the environment

- Different new land use options:
 - nature
 - recreation/hobby farming
 - urban surrounding
- Environmental impact unclear

Nitrate surplus at soil level (% change vs. base)

In sum

Agricultural income following EAA (% change vs. base)

	Germany
Crop production	-3%
Animal production	2%
Inputs	-3%
Premiums	-82%
GVA plus premiums	-9%

(Preliminary results)

Further results (to compute?)

- Consumer welfare decreases (higher prices)
- Alternative land user benefits
- Countries exporting to the EU benefit
- Many environmental effects:
 - Greenhouse gas emissions from agriculture
 - Biodiversity (undetermined sign)
 - Landscapes (undetermined sign)
 - Flooding risk
 - Forest fire risk
 - Farmland bird habitates (intensity related?)
 - ...
- To do: Combine with WTO scenario
- To do: Combine with increased second pillar