

An overview on the CAPRI model

Common Agricultural Policy Regionalized Impact Model

Wolfgang Britz, University Bonn

What is CAPRI ?

- A "multi-purpose" modeling system for EU's agriculture, allows to analyze
 - market policies (administrative prices/tariffs/preferential agreements)
 - Premium systems/quotas/set-aside at regional level
 - Environmental policies (standards/market solutions)
 - Changes in exogenous drivers (population/inflation/exchange rates/consumption behavior/technical progress)
- Regarding
 - supply/demand/trade flows
 - hectares/herd size/yields/input use
 - Producer & consumer prices, income indicators
 - Environmental indicators
 - Welfare effects including the EU budget for the Common Agricultural Policy (CAP)

What is CAPRI ?

- Acronym means "Common Agricultural Policy Regionalised Impact"
- Comprises
 - The underlying "data base"
 - The "economic model"
 - The software tools/code

CAPRI projects and funding

- EU funded project 1997-1999, building upon experience with global trade models and models for Germany
- First version operational 1999
- 2001-2004, new project CAP-STRAT, implementing the new global bi-lateral trade model and new environmental indicators
- 2001/2002, since 2005: work on farm type module
- 2004-2007, work on spatial dis-aggregation and expansion to EU27 and Western Balkans (CAPRI-Dynaspat)
- 2009-2013, work on Rural Development and integration with regional CGEs (CAPRI-RD)

***** CAPRI projects and funding, continued ****

- Since around 2002, increasing application of CAPRI in work packages of different research projects such as:
 - SEAMLESS (FP VI)
 - SENSOR (FP VI)
 - EU-Mercopol (FP VI)
 - EU-MedAgPol (FP VI)
 - CCAT (FP VI)
 - CCTAME (FP VII)
 - EC4MACS (EU-Life)
- And application for policy impact assessment (e.g. Agenda 2000, MTR, sugar market reform, dairy market reform)

CAPRI clients and users

- Main client is the EU Commission, directorates general for agriculture and for environment
- Users are research institutions: university, national research institutes and the Joint Research Centre of the EU
- Over time, a rather stable network of core coders/users has developed

Data base tools

- Build up a "suitable" data base for the model:
 - Comprising all the necessary input data
 - Using established and harmonized data sources
 - Without any gaps or inconsistencies
- Main elements.
 - At Member State and regional level:
 - Cropping areas, herd sizes and production
 - Input and output coefficients
 - Farm policy instruments (quotas/set-aside/premiums)
 - Income indicators per activity and region
 - Farm and market balances, Economic Accounts for Agriculture and related prices at Member State level
 - World wide for individual countries or country aggregates: market balances, tariffs, preferential trade agreements, bilateral trade flows

Data base tools

- Three "applications"
 - COCO: Member State level
 - CAPREG: regional level, input distribution
 - Global: market balances and trade flows, tariffs
- Code is realized in GAMS
- Application of Bayesian estimators to ensure completeness and consistency

National data base "CoCo"

- Acronym means "Complete and Consistent"
- Builds up time series from 1985-2005 (currently) for EU27, Norway and Western Balkans and Turkey for about 50 activities and products
- Main input source is Eurostat (area statistics, farm and market balances, Economic Accounts for Agriculture, Agricultural prices ..)
- Uses constrained estimation techniques to remove data error and fill gaps
- GAMS based
- Handled by Bonn team

CoCo continued

- Three "packages" inside CoCo:
 - Closed area balances, crop production = yields * area; for all crops simultaneously
 - Animal herds, slaughtered heads, live imports and exports, market balances for meat, balances for young animals, fat and protein balances for dairy products; simultaneously for groups of animals/animal products (cattle, pigs, poultry, sheep and goat, dairy products)
 - Market balances; simultaneously for groups of crops (cereals, oilseeds etc.)

Regional data "CAPREG"

- Introduces input allocation and regional dimension
- Takes data at Member State level (CoCo results) as fix and given
- Main input sources;
 - REGIO domain from Eurostat
 - Data on CAP from DG-AGRI
 - Engineering functions, results from econometric estimation for input/feed/fertilizer allocation
- Uses constrained estimation techniques to determine input allocation, fertilizer and feed distribution

CAPRI overview

Wolfgang Britz

Reference run

• Two steps:

- Trend estimates, corrected with policy shifts, are integrated with external forecasts and consistency requirements (area and market balances ...) (CAPTRD)
- The supply model and the market model are calibrated ex-ante to these results (CAPMOD, baseline modus)

Scenario impact tool "CAPMOD"

- Designed for counterfactual analysis:
 - what impacts if a different policy would be implemented?
 - Yard stick is the reference run, which covers
 - the current legislation
 - technical progress, population and income growth, changes in consumption patterns
 - for a 7-8 year horizon from the base year
 - CAPMOD combines supply models at NUTS II with an EU wide model for young animal and a global trade model for agricultural commodities

The supply side of CAPMOD

- Each NUTS II region has its own model
- Each model has the same structure (variables and equations), but differs in parameters from model for other regions
- The models are aggregate non-linear programming model, i.e. they maximize an objective function (revenue – costs) under constraints (land balance, set-aside obligations etc.)
- A non-linear cost function as part of the objective, partially based on econometric estimation, dampens over-specialization, allows for calibration to the base year situation and for model behavior based on observed developments

The supply side of CAPMOD cnt.

- The constraints comprise:
 - Arable and grass land
 - Feed requirements (energy, protein, fibre, min/max of certain feedingstuff etc.) per animal type
 - N,P,K balances
 - Set-aside obligations
 - Milk quotas

=> Relatively small number of constraints !

The supply side of CAPMOD cnt.

- The objective accounts for:
 - Revenues from selling products
 - Costs from buying variable inputs (fertilizer, plant protection, feed etc.)
 - Costs for other production factors (capital, labor, information) ⇔ the non-linear part
 - A risk component for the A,B,C sugar-beet regime

The global trade model of CAPMOD

- Spatial Multi-Commodity Model
- Comprises supply as well as feed, human consumption and processing demand for 47 products and 60 countries/country aggregates in 28 blocks
- Includes bi-lateral trade flows, import tariffs (including Tariff Rate Quotas / preferential agreements)
- And market interventions and export subsidies by the EU

*** *CAPRI* ***

The global trade model of CAPMOD

- Armington approach: quality differences by origin of products => imperfect substitution between imports and domestic sales
- "Well behaved" function parameters are in line with micro-economic theory consistent welfare analysis
- Consumer prices are different from producer prices, in most cases fixed processing margin
- Fat and protein balances for milk/dairy products for EU27 Member States

Link of modules in CAPRI

CAPRI overview

Wolfgang Britz

CAPRI overview

Wolfgang Britz

Spatial Downscaling

- For environmental analysis, local factors as soil, slope, climate or surrounding land use matter
- Spatial Downscaling part in CAPRI distributes consistently major results at regional level for EU27 to ~150.000 clusters of 1x1 km grid cells
- Allows link to bio-physical models and specific analysis e.g. regarding landscape features

Exploitation tools

- Java based Graphical User Interface (GUI):
 - Predefined views as tables, graphs or maps
 - Drill-down tables
 - User may additionally select or pivot
 - Results can be exported to clipboard and different file formats as CSV
- Exploitation can be applied to data base or to scenario results
- GUI covers also steering of the different work step including scenario runs

CAPRI network

- CAPRI handled as "club good":
 - Code handled as open source
 - but successful application of the model requires training and support
 - the resulting bottle-neck allows the core users/developers to control access
- The core network has a informal agreement about distribution of tasks, tenders together for projects and exploits scientific findings in conference contributions and publications
- Distribution and maintenance of code and data via a Software Version system to allow for distributed development and application

Thanks for your attention