Algorithms from Machine Learning -
interesting for CAPRI?

-by Wolfgang Britz, September 2011 —
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Background

A serious challenge for large-scale economic models is the dimensionality of the results generated by
model runs. These reflect the high level of dis-aggregation in different dimensions and the many
aspects dealt with in these tools, such as relating to economic, social and environmental indicators. A
single simulation run with CAPRI based on the farm type modules produces over 20 Mio non-zeros.
Clearly, any of these numbers is generated by a computer based model and should hence be a non
probabilistic outcome depending on the input and the code used. Specifically, the relation between
the input and any single number outputted is determined by the model structure and
parameterization, and pre and post-processing code. It must hence be possible to track any change
guantitatively back to the shock analyzed.

But that rather theoretical point of view has very little to do with the task at hand when one has to
distill from a set of model outcomes an analysis. The questions here are: what are the most
important results, i.e. salient to the questions underlying the analysis and large enough to matter,
and how can they be explained? For the client, the story behind the results is often at least equally
important as the results themselves. If the story is well told, the “black box” character of the tool is



removed and its usefulness in depicting major cause-effect relations becomes evident. Telling a good
and right story requires however often quite some time in analyzing results in a systematic way.

The user will hence have to decide for which items of the huge data set a thorough analysis of
underlying drivers is advisable. Limited time and human resources will set tight limits to the extent of
such systematic analysis. Typically, in any report, only a few dozen key results (perhaps
complemented with a few maps showing several hundredths numbers) will be presented. But these
key results, such as changes in aggregate welfare, farm income, GHG emissions or the nitrogen
balance are calculated from thousands of simulated items. How can we discover “the story behind
the results”, i.e. which regions, activities, price or policy changes etc. are most important for the
aggregate changes communicated?

The exploitation tools developed for CAPRI with a flexible on-the-fly approach to produce tables,
graphs and maps had been an important step to improve the efficiency in exploiting and analyzing
results. But in parallel, CAPRI has grown in scope and scale. It might be the time now to consider new
approaches to analyze model outcomes. Before discussing the integration of machine learning in the
exploitation tools, we will quickly review the current approaches based on the current exploitation
tools.

Using the CAPRI exploitation tools for systematic results analysis

A basic idea when using the CAPRI exploitation tools is go top-down from key aggregate results to
the underlying drivers. The starting point of the analysis can be e.g. changes in farm management
(crop shares, stocking densities), a welfare analysis or environmental impacts at aggregate level.
From there, one can track e.g. down the changes to specific sectors/activities or regions by using
more detailed tables or maps. These approaches had been presented in several training sessions.

Recent additions to the GAMS code further support result analysis:

e Decomposition of aggregate yield changes (http://www.capri-

model.org/docs/endog vields.pdf)

e Sensitivity analysis for endogenous features with the supply model (http://www.capri-

model.org/docs/Sensitivity analysis for model features in the CAPRI supplymodel.pdf)

e Decomposition of changes in behavioral functions of the market part (http://www.capri-

model.org/docs/Decomposing market model results.pdf)

All these approaches built on known structural features of the model. The now added “Machine
Learning” package aims to add more data driven approach applicable also with less a priori
knowledge.

Machine learning
Wikipedia gives the following definition: “Machine learning, a branch of artificial intelligence, is a

scientific discipline concerned with the design and development of algorithms that allow computers
to evolve behaviors based on empirical data, such as from sensor data or databases. Machine

Learning is concerned with the development of algorithms allowing the machine to learn via
inductive inference based on observation data that represent incomplete information about

statistical phenomenon. Classification which is also referred to as pattern recognition, is a important
2
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task in Machine Learning, by which machines “learn” to automatically recognize complex pattern, to
distinguish between exemplars based on their different patterns, and to make intelligent decisions.”

That is naturally a very general description. Machine learning has been widely in a wide range of
application fields. A typical example is the analysis of which clients of a bank has been given credits.
We have many observations with “credit granted” or “credit refused”, and probably a longer list of
attributes of the clients (age, sex, income, amount of the credit asked for, time since being a
customer with the bank, past bookings ... ). Machine learning could be applied to define a set of rules
which based on past decisions predict if a credit would be granted for a new application or not.
Machine learning will in many cases also be able to tell something about the possible error range
linked with the decision. That could e.g. allow the banks to make fast decisions in many cases, and
spend more time on the tricky cases. The book by Witten et.al. 2011 gives many interesting
examples.

Now, we can e.g. see the income changes in each farm types in a simulation compared to the
baseline as an outcome we want to predict, and their production program and changes in prices and
premiums as the attributes used to explain that outcome. Some farm types might exhibit very large
income changes, other little ones. What are common characteristics of the one and the other group?
Machine learning might then come up with a “pattern” (e.g. based on a regression model) which
determines the most important

. attributes impacting income
Possible P &

structural
Drivers Machine learning has thus a lot of

changes in a given simulation.

Simulation
results

(e.g. crop shares similarities with statistics —

in baseline) indeed many methods can also be
found in statistical packages - but
the focus to decide upon which
attributes and relations matters is

shifted to a certain extent from
the human being to the

computer. And, the tool box used
l in machine learning differs to a
certain degree from classical
statistics. And, not of least, many
of the algorithms had also been
developed keeping computing
time in mind.

Implementation in CAPRI

The implementation in CAPRI is based on the existing exploitations tool of the CAPRI GUI and the
WEKA machine learning library (Witten et.al. 2011) which is also integrated into other well known
packages such as RapidMiner. Thanks to the GNU license including full access to the underlying Java
source code, it was possible to integrate the functionality of WEKA into the CAPRI exploitation tools.
Only a few code changes were necessary to pass data from the tables and maps shown in the CAPRI



GUI to the WEKA library (see below). That is done automatically in the background with the aim to
reduce user input in the process.

As a consequence, a very powerful set of filtering and classification as well as related visualization
tools from machine learning can be applied to the result sets from CAPRI inside the existing
exploitation tools.

The current implementation is based on the interaction of two views:

1. A map or a table using classification colors — it defines the class attribute (=dependent
variable) of the data to classify. For classification algorithms which require nominal values,
the assigned class from the classification is used.

2. Atable with the “explanatory” attributes.

Both tables must be, as conventionally in the exploitation tools, the observations in the rows. For
maps, each map carries the data for a region. But one might also work with two tables where the
observations are not strictly geo-referenced entities such as farm types.

The CAPRI GUI will automatically send new data to the WEKA GUI if either the map (or the table
using classification colors) or the table is updated by a user action. The basic data flow is shown in
the graphic below.

Class attribute Preprocess
(numeric or nominal) (select attributes,
remove obs)

Filter

(select attributes)

Classify
Additional attributes

Interaction between CAPRI GUI and WEKA

Let’s construct an example: we want to check if the income change in cereals in a simulation depends
on the crop shares of cereals and the yields. In order to do so, we first render our map as usual (table
“Farm details, mapping view”, use the option dialogue to show percentage changes against the
baseline):
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The regions shown are our instances and the value plotted for a region defines the class attribute we
want to analyze. Any one instance consists of a vector of attributes of which one is the “class value”,
i.e. the value to classify, which can be numeric or nominal. The other attributes are used for
classification or clustering and stem from a second table (see below). Classification methods which
use nominal values can also be sued. In that case, the class chosen for the region, as seen from the
color in which is drawn, defines the class attributes. In our example above, each region would fall
into one of five classes.

Next, we open a second table with the data we want to use as explanatory attributes. The latest
trunk comprises the table “Supply details, cluster view” which comprises promising attributes which
are possible candidates to explain many changes in a simulation (for all activity aggregates: crop
shares/stocking densities, revenues, income, yields).
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In order to start the clustering/classification, we click in the table to open its popup-men and then
select “Classification”:
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We clicking one of the option if we can then decide to:

1. use numerical classification methods such as different regression methods. The observations
in the map define the dependent variable.

2. Use the class assigned by the maps input into nominal classification.

3. To switch classification off.

A new window will be opened which shows the WEKA GUI (see below).

The WEKA GUI
The classification is based on the complete functionality of the WEKA GUI regarding attribute
selection/visualization, filtering and classification, see http://www.cs.waikato.ac.nz/~ml/index.html.

There are very good manuals available from the site (the latest user manual is also available from
http://www.capri-model.org/docs/WekaManual-3-6-5.pdf), so that only a few major tips are given
below for fast start.

The tabs “Classify”, “Cluster”, “Filter” and “View and select” allow the user to access specific part of
the WEKA functionality. The result set from the current classification run can be shown in the lower
left panel (result list). For each result set, a popup menu opens options, e.g. to show a graph with the
prediction errors.
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Classification

Classify | Cluster | Fiter | view and Select
Classiier

Test optians
©) Use training set
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Percentage st % |56
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{Num) Class-numeric ~

Start

Result list (right-click for options)

stop

) Weka Explorer GUI Supply details, mapping view 111 : all Cereals Income, 2020 MTR_RDQuantlle : 12:11:58 -

Choose |LinearRegression -50-R 1.06-3

Classifier output.

o FOUNEr SUTIVITIES REVEINES +
-0.0085 * Fodder activities Income +
-0.164

0.0042 * et aside and fallow land Income

® $et aside and fallow land Revermes +

+

0.1035 # et aside and fallow land Crop share/Aninal density +

-0.0048 * ALL cattle activities Income +
-0.0268 * All cattle activities Yield +
0.005 * Beef meat activities Revermes +
0.0026 # Beef meat activities Income +
0.0207 * Beef meat activities YVield +
-0.0019 * Other amimals Revermes +
0.0031 * Other animals Income +

-9.7608

Time taken to build model: 0.04seconds

=== Evaluation on training set ===
=== Sumary ===

0.807
2.4774
3,369

61,4055 %
59.051 %
268

Correlation coefficient
Mean shsolute error

Root mean squared error
Relative shaolute error

Root relative squared error
Total Number of Instances
Ignored Class Unknewn Instances

The “choose” button will give access to a wide range of different classifiers, many of which
have additionally options which can be edited by users. A multiple linear regression using the
Akaide criterion for model selection is used as the default, assuming that most people will
start with using numerical values as class attributes. Please not that switching between
nominal and numerical class attributes might trigger error messages if the currently selected
classifier cannot handle the newly selected class attribute type.

It is recommended for our purposes to use under “Test options” “Use training set” (the
default in our implementation) as we are typically not interested in an out-of-sample test of
the prediction quality.

The actual classification can be started with the “start” button. If the data in the background
are updated, the actually chosen classifier with the chosen options will be started on the new
data set automatically. In absence of errors the “Classifier output” on the RHS will hence
typically show results based on the latest selected data.

The results can be visualized by clicking with the mouse on an item in the result list, the last
on in the list always being the newest. If one has tried several classifiers, the old results
remain available. However, if the data in the background change, the old results are
automatically removed.

The reader should note that all the functionality described is from the standard WEKA GUI so that the
user manual from WEKA can be used for further information.

PS: The cluster panel is not described, it works quite similar. Note however that filters are not applied
to the cluster (see below).
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The filter panel allows running different types of filters which remove attributes, in many cases
reflecting the correlation between attributes. In order to use the result from the filter run, click on
the result set and chose “Use output for classification”:
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The last selected filter will be automatically restarted if a new data set is implicitly loaded (change of
the map or of the data in the cluster table with the explanatory results). In order to switch off the use
of the filter, select “Do not longer use output for classification”

Attribute viewing and selection
The last panel available is especially interesting to quickly analyze statistics of the underlying data:
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The reader can manually remove attributes and the reduced set of attributes will then passed to the
filter and classifier. However, the attribute selection is not maintained when new data are loaded.
The “Visualize All” button produces graphs of all current attributes:
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The integration of algorithms from machine learning based on the WEKA library and GUI offers new
possibilities to systematic analysis of result sets. Thanks to the open source policy of WEKA, it was
possible to integrate these powerful tools transparently in the CAPRI GUI. Depending on the
experiences made over the next months, further links might be included (e.g. rending clusters in
maps).

References

lan H. Witten, Eibe Frank, Mark A. Hall (2011). Data Mining Practical Machine Learning Tools and
Techniges. Third edition. Elsevier, Amsterdam. 630 pages

9



Remco R. Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby, Peter Reutemann, Alex Seewald, David
Scuse (2011). WEKA Manual for Version 3-6-5. June 28, 2011, University of Waikato, Hamilton, New
Zealand.

10



