A new Graphical User Interface for CAPRI

Wolfgang Britz
Institute for food and resource economics

University of Bonn

- preliminary version, do not cite -

Bonn, June 2006

Acknowledgments

Many people have over the years contributed to the development, maintenance and application of the
CAPRI modelling system, and after now ten years since a first prototype was constructed, it is almost
impossible to list them all and name their specific contributions. The author opted for this rather technical
paper to refrain from citing the different (working) papers which shed more light on methodological

questions, but rather refers in general to the CAPRI documentation.

Nevertheless, it is only fair to mention Hans-Josef Greuel and Andrea Zintl, who both long before CAPRI
was born have already developed software concepts and code which underlined to a large extent until now
the DBMS of CAPRI, and in parts, its Graphical User Interface. Both continue to support the technical
development of CAPRI.

Finally, the work described in here would have been impossible without the funds by different donors,

mainly the EU Commission.

All errors in text and code remain with the author.

The author

Dr. Wolfgang Britz is a senior researcher and lecturer with the Institute for Food and Resource Economics
at the University of Bonn, and has co-ordinated since several years the activities based on the CAPRI
modelling system. Its responsibilities further on include the methodological concept of CAPRI and , to a

larger extent, its software implementation.
Contact:

Dr. Wolfgang Britz

Institute for Food and Resource Economics, University Bonn
Nussallee 21

D-53115 Bonn

Tel.: ++49-(0)-228-732502

Wolfgang.Britz@ilr.uni-bonn.de

mailto:Wolfgang.Britz@ilr.uni-bonn.de

Content

2 2 o0 o1 RSP 4
The dIfFEreNt WOIK SEEPS ...vvveiiiiie ettt et e e e e st e e st e e s st e e st e e e sn et e e e snteeestaeeesnteeas 4
BUIlAING UP the data DASEccvvieeiiiie e et e e e saae e e e e nae e e s srae e e e 6
EXploitation Of the data DASEcoviiiiieiice e e 7
The WOrk Step “Generate DASE 1INvi i e e e seee e s e e e e enees 12
RUNNING @ SIMUIALIONeee et et e s e et e e st e e et e e e s ste e e s tete e e s ssaeeesnteeesnnteeennes 14
EXPIOItation OF gUX-FIEScvvieiieie e e e e e e et e e e s e e bbe e e s ae e e s nraaee e 14
T A T ol] =] o] TR 15
History and general QUITBTINESuiiiiiiiiiiiie ettt et e st e et e e e e e sneee e 15
INtEraCtion WIth GAIMSo ettt et et nb et b esbe e et e nbee e 17
[N o] (o] e 1ATo] a1 (o o - PR TRTR 18

The structure of the GAMS generated gaX FIlESooviiiiiiiie e e 18
Loading the data from gaX fIlESccuiriiiie e 18
Multi-dimensional viewer with pivoting and exporting possibilities...........cccccoviveiiii i 19

A replacement of the XIML/XSLT tabIESueiiiiiiiiiie e 19

Background

The use of the CAPRI modelling system is increasing, and the user group becomes more diversified.
Whereas in the first years, almost all users had directly contributed to model development and where
familiar with the underlying GAMS code, more and more users now get to know about the system during
training sessions, and have only a limited knowledge of GAMS and the CAPRI GAMS code. Already a
few years back, a Graphical User Interface (GUI) was developed in order to supports users to apply
CAPRI for simulations and exploit results. For reasons laid down further down in a short chapter, this GUI
needs was now replaced by a completely new development. That paper both explains the usage of the new
GUI as well the underlying software concept. It is structured as follows. The first chapter gives a short

overview over the different work steps necessary to finally allow simulations with CAPRI.

Logging in

The first step is to set the user name and level, which is done by selecting the user menu from the menu
bar. As long as no user name is entered, the user cannot change its type and will only have exploitation
rights. The user type “runner” has additionally the right to define and run scenarios, and delete scenario
results. An user of type “administrator” can perform all operations, including generation of a new data

base and calibration of the modelling system.

Graph: Setting user name and user type

File I!m GAMS System settings

W
User| spe

User type dialog

9 Enter user name :

itz

[Ok l [Cancel]

Please select user kvpe:

E:xploiter

Excploiter

Adminiskrator

The different work steps

The process of using and maintaining CAPRI is split down in the following work steps:

1. Building up the data base

2. Exploitation of the data base

3. Generating the baseline

4. Scenario definition

5. Running scenarios

6. Exploitation of scenario results

7. Deleting scenario definition and results

Each work step may comprise different tasks. No task will require starting more then one GAMS program,
but some tasks will start the very same GAMS program with different settings. Some tasks will not start
GAMS, but other tools inside the GUI.

The different work steps are shown in a panel in the lower left corner of the GUI, and are presented by so-
called radio-buttons, which means, that only one button can be selected at any time. Depending on the

user level, some of the work steps and tasks may be disabled.
Graph: the work step panel

Work step selection

) Build database
") Generate baseline
() Edit simulation

") Run simulation

) Enploit data base results

() Exploit scenario results
() Exploit gdx files

() Delete scenario results

Each work step may comprise several tasks, which are shown in second panel below the work step panel.
The content of the panel hence changes when the user selects a different work step. Again, the different

task panels comprise radio buttons for selections purposes.
Graph: A task panel

In the following, the different tasks for each work step are described in detail.

Building up the data base

Building up the data base is the logical starting point in sequences of work steps. A new data base for the
model needs to be constructed either after updates of the underlying statistical raw data, or after
methodological changes in the code affecting content and structure of the data base. Controlling if the
different tasks necessary when updating the model yielded satisfactory results is a time demanding task
which requires in-depth knowledge about the quality of the different in-going data and the logical relations
between the different elements of the data base. Users interested in ex-ante policy analysis are usually
better off by taking the data base as given, and consequently, the work step is disabled for users which

have no “administrator” status.
The work step consists of four different tasks:

1. Generation of complete and consistent time series at national level, mainly based on Eurostat
data (CoCO, from Complete & Consistent). CoCo runs per Member State simultaneously for all
years, if data from other Member States are used to derive fallbacks as EU average, only the raw
statistical data are used. The user can only choose which countries to run, and which years to

cover.

2. Completion of the CoCo data by time series on consumer prices and certain feeding stuffs
(CONSUMER). In both cases, it turned out that only the complete and consistent time series for all
Member States from 1. provide a good basis for that step. The step is hence run simultaneously for
all Member States and years, based on the results of the CoCo task. Here, only the years to cover

can be chosen by the user.

3. Generation of time series at regional level and ex-post calibration of the model including
estimation of feed input coefficients (CAPREG). The treatment of years in CAPREG is not
identical. For all years, activity levels, output coefficients and input coefficients (excluding feed
inputs) are generated. However, only for the base period, a three year weighted average around
the chosen base year, feed input coefficients are estimated and the supply models are calibrated
based on techniques borrowed from Positive Mathematical Programming. The user can hence
choose for which Member States to run CAPREG, for which years and for which base year.

Equally, the farm type module may be switched on or off.

4. Building up the international data base. The step includes aggregation of Supply Utilization
Accounts and bilateral trade flow matrices from FAO to the product and country definitions of

CAPRI, aggregation of the supply and demand elasticities from the World Food Model to the

product and country, estimation of bi-lateral transport costs and conversion of the FAPRI baseline

to the product and regional aggregation of CAPRI.

The underlying methodology for the different work steps is described in detail in the CAPRI model
documentation. The sequence of the tasks as described above follows the work flows. It should be
mentioned that certain preparatory steps, as downloading updated data from EuroStat, and converting
these data into GAMS tables read by CoCo and CAPREG are no yet integrated in the GUI.

Exploitation of the data base

Exploitation means letting the data speak, which requires to access and view them in an appropriate way.
As past requests from users inside and outside of the CAPRI network prove, the CAPRI data base with its
pan-European coverage at NUTS Il and now even farm type level inside NUTS Il regions, along with the
detailed break down to agricultural activities, inputs and outputs is valuable on its own, and not only a
necessary input in the CAPRI simulation engine. The tasks attached to that exploitation steps follow the
tasks described above: accessing the time series at national level generated by CoCo (market balances,
activity levels and yields, unit value prices, Economic Accounts for Agriculture), time series at national
and regional level added by CAPREG (input and output coefficients at regional and national level, activity
levels and production at regional, income indicators) and finally, the set of data for the base period, which
comprise feed input coefficients and matching animal requirements. Finally, the results from the global

data base step can be accessed.

Graph: The task panel for exploitation of the data base

Data exploitation mode selection

(") Show COCO results
(") show CAPREG Lime series
") show CAPREG base year results

The results from the different steps are comprised in large “data cubes”, i.e. multi-dimensional matrices,

which span the dimensions regions, columns (mainly activities, market balance items, prices, positions

7

form the Economic Accounts), rows (mainly input and outputs, income indicators, activity levels, feed
requirements) and, finally, years. The time series from CAPREG, to give an example, almost cover
200 Mio zero and non-zero data cells. When one of radio-buttons is operated, the complete set is first
loaded, which may take several then seconds, depending on the processing and input speed. Afterwards,

the user can determine how the data dimension should be pivoted (e.g. as time or regional series).

Graph: The pivoting dialogue

e Transposing and Merging

The boxes represent the data dimensions and can be dragged with the mouse
Spreadsheet row groups]
Spreadsheet rows 30 Regions(30)
Spreadsheet column groups]
Spreadsheet columns 139 | Activities, Prices{139)
Animation i]
Box (1) 185 | Input and outputs{185)
Box (2) ral Years(z1)
Box (3)]
Box (4) u}

I ok l I cancel l

The pivoting dialogue is based on drag-and-drop of boxes, where each box represents a data dimension as
e.g. regions or years. The rows of in the drag area are linked to the dimensions of the view port. Dragging
e.g. the box for the years to the line whose label shows “spreadsheet columns” will generate a time series
view. That is done by clicking with mouse in the box, keeping the mouse button pressed, and then moving
the mouse. During the operation the box changes colour. By releasing the button box, the box jumps to its
new position and its colour changes back to the original one. Several boxes can be dragged into one view

port dimension. Views with empty rows or columns are not allowed.

To generate nicer views, the user can generate column and row groups as well. The pivoting — and as
explained later, row and column selection — are maintained when exporting the data, so that the user has a

quite powerful instrument to arrange data for any further processing.

Graph: The tabular view
Button to open dialogue to
export data to external file

Button for
clipboard export

Scroll-Down box for data
dimensions not in columns
and rows of table

Toggle button to hide or
show rows with empty
cells only

Activities, Prices

& P |Hide empky rowsl Arial w |13 » |plain » | |2 » |, % | | Table “
BLOOOOOC | | SWHE w : —
B 1984 ‘ 1985 ‘ 1986 ‘ 1987 ‘ 1988 ‘ 1989 ‘ 1990 ‘ 1991 ‘ 1992
E=y
530618 B775.02 556524 B017.07 B759.55 B0¥E.30 B720.587 &

§52.73 3468.75
196.45

5.02

6556 55
201.45
5565.24

752134
22081
B017.07

8461.93
21910
5769.55

789537
2122
B07E.30

5401.03
214.89
672057

Button to open selection Button to open selection
dialogue for columns dialogue for rows

Once the pivoting done, the data are shown in a tabular view similar to MS EXCEL or MS ACCESS. The

tabular view has can be controlled by the user in several ways:

On top of the table are most probably scroll-down boxes, which carry the items of such data
dimensions which are not shown in the columns and rows. With the help of these boxes, the users
can rotate through the different tables generated by its pivoting. The user may however opt for a
pivoting where no outer view port dimension are present, and all data dimensions are merged into

the columns and rows of the tabular view, in which case no scroll-down boxes will be present.

To the right hand side of these boxes is a toolbar which offers several options: the user may
change the font family, font size and font type, the number of decimals shown, the decimal
separator, and, finally, a scroll-down box to switch between the tabular view and different type of
graphs. Additionally, there are several buttons, one to export the current cell selection to the
clipboard, one which opens an export dialogue and a toggle button to hide or show rows which
comprise zero values, only. The tool bar may be dragged away from its position, and can put

above or below the scroll-down boxes.

In the corners on top of the rows label and left of the columns labels are two selection bottoms.
Opening these buttons will allow the user to determine which rows and columns are currently
shown, by either using the mouse or keyboard on the scroll down box, or by typing a selection
string in the input field and using the “apply selection button”. The selection string may either use

a combination of alphanumerical chars with “?” and “*” and/or first code “ : ” last code

sequences.

Graph: The selection dialogue

£ Selection dialog for Spreadsheet rows

IJse input field or mouse ko define selections
Es |

[apply selection ta lisk l

The user may sort the rows by one or several columns by pressing on the column labels above the
data cells. The box around the label will turn darker, and small arrow will show the sort direction.
By pressing the CRLT-key, and clicking on a second column label, and second sort criteria is
introduced. The size of the arrows shows the sort order. By continued clicks, the sorting order is

first reversed, and then the original sorting re-established.

10

Graph: Sorting by data in a column

Activities, Prices Input and oukputs -)

& B = Hideempty rows | frial w113 |w |plain w | |2 |w|. % | »|Table v

v | [3WHE v i
1984 ‘ 1985 ‘ 1986 ‘ 1987 ‘ 1983 ‘ 1989 ‘ 1990
52

SI000000 0477 .33 78877 095,24 £399.62 5716.66 a054.81 458046
UKO000000 789329 B596.76 7037 49 B182.35 £380.95 £343.00 7086.77)
NLODODOD 786390 BE94.50 814112 B996.71 7269.74 744509 771275
IRDDODO0 785199 B475.53 5005 .42 73793 8430.43 o092 67 9142.04
DHO00O0DO 75597 B1 B003.86 B370.96 596327 B359.34 746351 77B5.05
ELODO000 B900.28 B306. 15 677502 5065.24 g017.07 B7B9.55 B076.30
FRODO0OO BE15.43 B120.29 5B57 89 5731.91 B343.77 5532 46 BE75.71
SKO00DDO E195.01 4310.10 5533.92 547546 803235 o407 64 a0B5.57)
DEOQODOOOO 5546.01 5737 .46 5304 B1 5397 89 5352 41 5E583.90 B461.72
HUODODDO 2413.41 494281 445051 4508 .64 5221.03 520663 435431
SEnnnnn 700 7N AEGQA TR 340 an ARNG A7 AQR MR RN 7E REAR 27

The clipboard export will put the data, column and row labels as shown into clipboard, using
tabulators as field delimiters. That format is accepted by most word processors, text editors,

spreadsheet programs and many DBMS systems.

The export dialogue offers additional options. Firstly, the user has to determine to what file the
data will be exported where an existing file will be overwritten. Secondly, several formats are
offered: rather simply formatted HTML-tables, GAMS tables, comma-separated files (CSV) and
text format (fixed field width format). Selection dialogues for the dimensions not merged into

columns and rows of the tabular view are offered as well.

11

Graph: The export dialogue

£ Please select file name and format for printing

Select the file to which wou want to export

Export selection For Input and outputs

| Export selection for Years %

{3 HTML {basic table format For internet browser))

{1 €5 {comma separated text file, for e.g. EXCEL)
Select the Format of the file to export () GAMS (as GAMS table)

() TABF {text Format, tabulator separated)

() THT (text Format, Fixed field width)

[ok H Cancel

The work step “Generate base line”

For manifold reasons discussed in methodological papers, economic models as CAPRI are not suited for
projections, but as tools for counterfactual analysis against an existing comparison point or an existing set
of ex-ante time series. The point in time or these time series are called “base line” or “reference run”.
CAPRI “runners” which use the model for ex-ante policy simulation do not need to construct their own
baseline, but are typically better off by sticking to the baseline provided on a yearly basis along with the
latest version of the GAMS code, data base and software. Accordingly, the step and the included tasks are

only for user type “administrator”. According to current planning, the baseline will be updated in close co-

12

operation with DG-AGRI twice a year in early summer and early winter, following the release of a new

“medium term market outlook” by DG-AGRI.

The CAPRI baseline is a mix of trends, expert knowledge and automated checks for logical consistency,

and is constructed by a sequences of tasks:

Generation of ex-post results. Albeit not strictly necessary for the base line, the ex —post results
often prove quite helpful when analysing the reference run. The ex-post results are model run for
the base at base year policy and other exogenous parameters, inflated to the chosen simulation

year.

Generation of policy shifts. In order to capture in the later trend projection the effect of policy
changes between the base and the simulation year, so-called policy shifts are calculated by
applying the ex-ante policy to the state-of-world (technical progress, management practises,
population numbers, per capita income, consumption patterns etc.) in the base year. The policy

shifts are defined as the relative changes against the base year of implementing the ex-ante policy.

Generation of the trend projection. The trend projection task is rather time consuming, and may
run several days when the farm types are included. It consists of several sub-tasks. Firstly,
independent trend lines for many different variables and all regions are estimated, and for each of
these trends lines, statistics as R2, variance of the error terms etc. are calculated. These results,
together with the base period data and the policy shifts, are used to define so-called supports, i.e.
the most probable values for the final projection. These sub-tasks are relatively fast. The final
consistency sub-task is broken down in two iterations. In the first iteration, only the Member
States consistency problems are solved. For the different projection years, the problem will look
for minimal deviation from the supports — which may be interpreted as a priori information in a
Bayesian interpretation — such that different necessary logical relations between the data are not
violated — the data information in a Bayesian estimator. These relation define e.g. production as
the product of yield and activity level or force close market balances. The details can be found in
the methodological documentation. Once that step is done, the Member state are added up to the
EU level, and new support are defined which take given expert projection into account, currently
mainly a baseline provided by DG-AGRI. In the second round, the Member State problems are
solved again, and then, problems for all NUTS Il regions in each Member State, and, for all farm

types inside of each NUTS Il region.

Baseline calibration. In the final task, the results from the trend projection serve as the major

input to generate the baseline.

13

Running a simulation

At the core of CAPRI stands its simulation engine, which iteratively links different types of economic
models: aggregate programming models at regional or farm type level, with an explicit representation of
agricultural production technology, aggregated versions of these models at Member States model linked
together to derive market clearing prices for young animals, and finally, a global spatial multi-commodity

model for main agricultural products and selected secondary processed products.
Differences in results between simulation may be rooted in three different blocks:

1. Differences in the in-going base year data and baseline. CAPRI allows several base years and

calibration points to co-exist, and user may choose the base and baseline year.

2. Difference in what economic models are linked together and in the regionalisation level as the
user may switch the market modules on or off, may run the model at Member State NUTS Il and

farm type level or in comparative static or recursive dynamic mode.

3. And finally, the most common, differences in the exogenous assumptions including the policy

definition.

Graph: The interface in simulation mode

Exploitation of gdx-files

GDX-files are generated by GAMS and typically serve either an exchange format between different
GAMS applications, or for exploitation purposes as the GAMS-IDE comprises a view for GDX-files.
Further tools for GDX-files are available from GAMS company and are described in different documents.
In opposite to listings generated by GAMS programs, the GDX files store the data in full numerical

precision in an internal format.

The new CAPRI version passes information from one task to the next with the help of GDX files, so
generates CoCo a gdx files with the time series at national level, which is read by CAPREG. And the
regional time series generated by CAPREG are inputted by the trend projection tool CAPTRD. These gdx
files are accessed when the different tasks of “Data base exploitation” are chosen. The user has on top the
possibility to load one or several tables from one or several freely chosen gdx files. When the task “exploit
gdx files” is selected by pressing the related button, two buttons are shown in the task panel. The first one,
labelled “load gdx files” will open a file selection menu when pressed. When the ok button of the dialogue

is operated, the content of the gdx file is partially loaded, and a table is added to the right upper window of

14

the application showing the parameters and sets comprised in the gdx files, along with their number of
dimensions and records. When the close button next to the table is pressed, the table is deleted. Pressing

the “load gdx file” again will add more tables.

One parameter from each table may be selected (pressing the “crtl” key when clicking with the mouse de-
selects). If several parameters from one file needs to be loaded, the user may open the same file several

time.

The content of the different parameters is merged together, and the parameters themselves span an
additional data dimension. If the user does not provide input in the first column of the tables labelled “user
input”, the program will generate automatically names. The data loaded are shown in the table tool

described above.

Software concept

History and general guidelines

The original concept of the CAPRI software concepts dates back to the year 1997 when the first EU
financed project started. At that time, it was decided to use GAMS as the tool to build the core code of the
economic model and to use template models. Templates models are structurally identical, i.e. they
comprise the same equations and variables, but their instances differ in the parameters loaded into the

equations. That concept is directly supported by GAMS.

Given the detailed break down of the economic models by NUTS Il regions, many products and activities,
a large data base became necessary to build all the necessary instances of the template model for the
supply side, and it was decided to use a Data Base Management System to store statistical raw data,
consistent ones and model results. The team at IFR Bonn had already existing tool and libraries at hand for
DBMS and to build rather simple Graphical User Interfaces, build as a mix of FORTRAN and C-Code, in
parts using a commercial portable GUI. These tools had already been successfully applied in the context
of different economic modelling system, inter alia the RAUMIS system for Germany which was similar
concept to the supply side of CAPRI, and the global trade model WATSIM which served as a blueprint for
the first version of the CPARI market side. These decisions led to a a rather simple concept: the GUI let
the user choose some simple settings (as for which regions and years to work), called upon the DBMS to
retrieve the necessary input data, converted these data to GAMS tables and called a GAMS program as a
sub-process which included the data and further use defined settings. The GAMS code in turn comprised

statement to generate text file with the final results, and these were loaded back on the DBMS. In order to

15

exploit the results of a run, the user had to rely on the FORTRAN/C based tools linked to the DBMS,

mainly DAOUT, a multi-dimensional viewer with pivoting and exporting possibilities.

A first deviation from the general concept occurred at the end of the first project phase 1999 when part of
the result data were stored apart in comma-deleted files to source the Java based mapping tool. Again,
maps as such where nothing new, there had been FORTRAN/C based tools for maps in use since years in
RAUMIS, whoever, the Java applet added much more user interaction as showing results for a specific
regions when moving the mouse over the related polygon. Two years later, yet another outlet arrived with
HTML-formatted input tables. Consequently, part of the result data were now already stored three times in

different formats.

In 2003 it became obvious that the bell stared to ring for the FORTRAN/C solution. The underlying
libraries were not thread safe, and using multi-processor machines resulted in rather frequent error
messages and blocked processes. Trials to change the underlying C code vyielded no serious
improvements. Thus, it became clear that a new concept was needed. First prototypes of a Java based GUI
and classes to replace the DBMS code were developed, at that time, where still several projects in house
were using the old GUI concept, the aim was to replace the C-Code by Java while still keeping for an
intermediate period the FORTRAN code, and then, gradually, move to a Java only solution for the GUI
and DBMS. As almost all CAPRI users were using single-processor hardware and the C/FORTRAN
solution continued to work under Windows XP, a rapid move to Java seemed not urgent, and the work at
the Java solution stopped, as the growing use of CAPRI resulted in a high workload for the team in Bonn.
The development process in Bonn concentrated on methodological improvements of the modelling system
as the spatial trade model, ex-ante calibration, integration of the new Member States or the consistent link

to the DG-AGRI projections, and not a new software concept.

The start of SEAMLESS along with the fact that more and more users worked on multi-processor systems
and were thus facing an error-prone GUI pushed up the priority of a different software solution. Compared
to the status in 2003 several facts had changed. Firstly, CAPRI was the only remaining system in Bonnn
using the FORTRANY/C styled GUI, some older system were simply outdated, and some newer system had
not yet developed an user interface. Accordingly, backwards compatibility with the old FORTRAN GUI
libraries was not really longer an issue as the it less costless to develop a JAVA only version for CAPRI.
Equally, it became obvious that the former well-funded arguments to use a home-made DBMS became
obsolete: storage requirements and processing speed were not longer real bottle-necks given the powerful
PCs available, and GAMS had generated its own intermediate file format called gdx which was faster and
less storage demanding as text files and accessible via tools for export and viewing. On top, SEAMLESS
carried the potential to build and maintain a GUI and DBMS targeted to large-scale modelling system. Not

at least, any changes in the regional breakdown of CAPRI and its lists of products and activities or

16

indicators required consistent structural changes both in the GAMS code, the DBMS and the FORTRAN

code.
As a result of the facts mentioned above, the following decisions were taken:

All CAPRI work steps and tasks will be steered from one application via a user interface, and not,
as in the past, by several applications. The user interface shall be constructed as to support the
work flow. The interface shall feature tools to track past work steps, and support access rights to

applications differentiated by user groups.

CAPRI will not longer feature a own DBMS, but rather store all intermediate and final results in
gdx-files which are produced and read by GAMS code. The gdx-file can be accessed for
exploitation purposes and in order to export data in another DBMS, as e.g. the SEAMLESS
knowledge base, by JAVA classes provided by GAMS cooperation.

The existing exploitation tools (maps, tables, graphs) will be re-written in JAVA and be sourced

by gdx-files to prevent storing the very same data in different formats.

The GAMS code will be changed such that the GAMS code generated by the user interface

becomes minimal. All hierarchical relations between regions will be stored in GAMS sets, only.

Interaction with GAMS

The interaction with GAMS consists of three parts:
Generating GAMS code based on user input
Starting GAMS
Controlling the GAMS run

There are two types of input files generated based on user input. The first one are so-called scenario files
and define the exogenous drivers for a CAPRI run as population growth, macro-economic environment or
policy definitions. Here, the final aim is to integrate the scenario editor from SEAMLESS into the CAPRI
user interface. The scenario files are typically stored for longer period on disk, both to provide templates
for other scenarios as well as for documentation purposes. The name of the file to load is passed to GAMS
either as an argument or stored in a input file with a fixed name. The second types are rather small files
with a fixed name which typically comprise the information for which years and regions to run the GAMS
program along with a small number of methodological switches. These files are overwritten with each
start of the related GAMS code.

17

GAMS is started as a sub-process in a own thread. The output from GAMS which is typically shown in
command processor window is redirected into a pipe and its content read from there and shown in a
window on the CAPRI user interface, so that the user can check GAMS execution at run time. The code
allows to filter out specific statements generated by GAMS to be shown in the windows title bar to give an

indication about program progress.

There are two final control mechanism. Firstly, the return code by GAMS which indicates if the GAMS
program was correctly compiled and then executed. Typical execution time errors are math errors as
division by zeros or read/write errors on external files. Secondly, the user can apply different type of

exploitation tools to check the logical content of the results.

Exploitation tools

The structure of the GAMS generated gdx files

The exploitation tools load directly the gdx-files generated by the GAMS processes linked to the tasks
described above. The gdx-files only store non-zero numerical values. The main content of a gdx file are
two types of records. The first types provides a list of all labels used to identify the numerical data in the
gdx file as GAMS does not support numerical indices, but requires character labels. The list does not
distinguish for which data dimensions the labels are used, they are hence typically a mix of product,
activity, region and further labels. The second type of records belong to GAMS parameters (scalars,
vectors, or multi-dimensional tables). Each non-zero numerical item in each parameter has its own record.
Each of these records provides the numerical data in double precision (depending on the parameter type
there may be different data stored in one record, as for a variables its upper and lower bound, current level

and marginal value etc.), and a vector of indices pointing in the list of codes described above.

Loading the data from gdx files

The data matrices generated by the different tasks as described above and stored in gdx-files are typically
rather sparse, so that it seemed appropriate to load the data from the gdx-file into hash tables for
exploitation purposes. That is done in a two step procedure. In the first step, all records from the gdx file
are read and vectors of all found indices are stored. The length of each data dimension is only known
when all data records are read, and is equal to the number of unique indices for each dimension. Once all
records are read, the final length of these index vectors then defines a linear index room for the multi-
dimensional table. In a second step, the records are read again, and the index vectors for each record now
allow to define a linear index in the total table. A hash code is derived from that linear index to store the

numerical values into a hash table. As the number of items to store in the hash table is known beforehand,

18

a rather simple hash table implementation can be used. If necessary, step one can be run over several
parameters which may be hosted in several gdx files, so that results can from different runs can be merged

into one hash table.

As the gdx-files provide a lists of all labels used in any parameters stored in that gdx-file, the index
vectors allow to build lists of labels linked for each index in a data dimension. There exists an additional
storage type in the gdx-files to retrieve long-texts to the labels as defined in GAMS set definitions.
However, one label may occur in different sets with different long texts, and the gdx-file do not store a
possibly user defined relation between a data dimension of a parameter and a specific set, an option
termed domain checking in GAMS. In order to link hence long-texts to the labels used for a specific data
dimension, two options are possible. Firstly, the user may interactively at run time re-establish based on its
knowledge the link between data dimensions and specific sets, and thus add long-texts to the labels used

on that data dimension. Or the relation may be hard coded in the JAVA code.

Multi-dimensional viewer with pivoting and exporting possibilities

The multi-dimensional table is then loaded in a spreadsheet like viewer with pivot-possibilities. The user
may switch between a tabular view of the data, or different type of graphs (line, bar, pie, spider). Scroll-
down boxes allow the user to rotate through data dimension not shown in the view port columns and rows.
Several data dimensions may be merged into one view port dimension. The user can use column and rows
groups, and may apply selection to columns and rows as well as to columns and column groups. Rows
carrying zero values only may be hidden. Rows may be sorted by size of the numerical values in one or
several columns. The current table may be loaded into the clipboard. Alternatively, all or a selection of
tables may be exported to a external file, in different format (HTML, CSV, tab-separated, GAMS, fixed
width tables). There are further possibilities as changing fonts or the number of decimals. The viewer’s
concept is based on a tool already available as DAOUT in the old GUI, which should reduce the costs of

CAPRI users to switch to the new solution.

A replacement of the XML/XSLT tables

Analysing the outcome of a large economic modelling system as CAPRI is not an easy task. A single
model run will produce more then 1 Mio non-zero numerical items for a single year, and less experienced
users feel lost where to start when analysing that data mountain. As an answer to that problem, the CAPRI
team developed table views (as welfare analysis, market balances, prices or environmental indicators)
which group together small selection of all data available. One may be tempted to see these as indicators —
the major concept put forward by e.g. SEAMLESS to exploit results. Experience shows that there is not a

clear distinction between raw model results and indicators. Rather, depending on the analysis at hand,

19

different results and indicators are used in conjunction. Often, results for indicators must be explained by
the underlying raw model results from which they are calculated. Here, the concepts of views helps the
users as HTML-link draw logical connection between tables. So can the change in regional agricultural
income tracked down in changed in income per activities and changes in activity levels. And the change in
income per activity can be explained by changes in market revenues, premiums and production cost of
each activity. And changes in market revenues are again resulting from changes in output coefficients and
prices, and so forth. Interlinked tables showing these selected results hence allow the user a guided way

into the huge data cube, and help to concentrate on major results and finding their causes.

In the very beginning, each of the tables consisted of hard coded HTML generated as the GAMS program
executed, resulting in a huge number of files, loaded with formatting information. Further on, as several
tables comprise the very same numerical results, these were stored several times in different tables. Any
change in the structure or layout of the table required to run the model again, and all scenarios results had

to be available at run time.

As a consequent next step, data and the structural and formatting information were separated. The data
were stored in XML files and a XSLT program in conjunction with Javascript generated dynamically
HTML based on a client side solution. However, the resulting program mix was successfully tested on
Windows IE, only, and depending on how the data dimension where rotated in the view port, the XML
parser had to parse a huge number of XML file to produce a HTML page with a few numbers, provoking

long response times.

In order to reduce the number of different software instruments at hand, it was decided to embed the
functionality of the XLM/XSLT in the Java based exploitation tool. That is done as follows. The table
definitions (selection of items from each data dimension, related long texts, specific rotation) had always
defined in XML and are now loaded by JAVA. The user may then scroll select at run time a table (as
before in XSLT), and the multi-dimensional viewer will filter out the elements to show in columns and
columns groups, rows and row groups. Some remaining issues (integrating the links, pivoting depending
on the table definitions) are not yet incorporated in the current Java code and will be solved in due course.
The latest version of the XML:/XSLT tables used Javascript to generate SVG-code to build different type
of graphs. The majority of code is already successfully ported to Java and integrated into the table tool,

however, the quality of the Adove SVG renderer exceeds the Java graphic engine.

The final version of the XML/XSLT table tool comprised code to generate SVG-codes maps. Albeit the
graphical quality was quite high and exceeded that of the Java based mapping applet, the necessity to
parse for each numerical item many XML-tables reduce the usefulness. One of the next steps is to port the

underlying Javascript code to Java, and to provide a Java class to read the SVG-based polygon definitions.

20

