User Tools

Site Tools


input_allocation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revisionBoth sides next revision
input_allocation [2020/02/25 09:57] – [Input allocation for labour] matszinput_allocation [2020/03/31 08:12] – [Input allocation for feed] matsz
Line 146: Line 146:
  
 Wide supports for the Gross Value Added of the fodder activities mirror the problem of finding good internal prices but also the dubious data quality both of fodder output as reported in statistics and the value attached to it in the EAA. The wide supports allow for negative Gross Value Added, which may certainly occur in certain years depending on realised yields. In order to exclude such estimation outcomes as far as possible an additional constraint is introduced:  Wide supports for the Gross Value Added of the fodder activities mirror the problem of finding good internal prices but also the dubious data quality both of fodder output as reported in statistics and the value attached to it in the EAA. The wide supports allow for negative Gross Value Added, which may certainly occur in certain years depending on realised yields. In order to exclude such estimation outcomes as far as possible an additional constraint is introduced: 
- 
-FIXME 
  
 \begin{equation} \begin{equation}
Line 235: Line 233:
 {{:code_p_73.png?600|}} {{:code_p_73.png?600|}}
  
-This part of the objective functions tries to minimize the difference between the requirements calculated from the feed input coefficients (v_animReq) and the expected (mean) requirements (p_animReq) coming from literature. Due to the weighting with number of animals (v_actLevl) and expected requirements (p_animReq) the optimal solution tends to distribute over or under supply of nutrients relatively even over all activities and regions. It has been decided to attach an exponent smaller one to these weights which strongly pulls them towards unity (see: [...] FIXME (doppelstern) .1). This tends to give more weight to “less important” animal types compared with untransformed weights.+This part of the objective functions tries to minimize the difference between the requirements calculated from the feed input coefficients (v_animReq) and the expected (mean) requirements (p_animReq) coming from literature. Due to the weighting with number of animals (v_actLevl) and expected requirements (p_animReq) the optimal solution tends to distribute over or under supply of nutrients relatively even over all activities and regions. It has been decided to attach an exponent smaller one to these weights which strongly pulls them towards unity (see: [...] FIXME (section? .1). This tends to give more weight to “less important” animal types compared with untransformed weights.
  
 __Deviation of sub regional total feed intake from regional average__ __Deviation of sub regional total feed intake from regional average__
input_allocation.txt · Last modified: 2022/11/07 10:23 by 127.0.0.1

Except where otherwise noted, content on this wiki is licensed under the following license: CC0 1.0 Universal
CC0 1.0 Universal Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki