User Tools

Site Tools


baseline_generation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
baseline_generation [2020/04/26 05:18] matszbaseline_generation [2022/11/07 10:23] (current) – external edit 127.0.0.1
Line 12: Line 12:
   * The second example is that of FAPRI model, where a so-called melting down meeting is organised where the modellers responsible for specific parts of the system come together with market experts. Results are discussed, parameters and assumptions changed until there is consensus. Little is known about how the process works exactly, but both examples underline the interaction between model mechanisms and ex-ante expectations of market experts.   * The second example is that of FAPRI model, where a so-called melting down meeting is organised where the modellers responsible for specific parts of the system come together with market experts. Results are discussed, parameters and assumptions changed until there is consensus. Little is known about how the process works exactly, but both examples underline the interaction between model mechanisms and ex-ante expectations of market experts.
  
-As is the case in other agencies, the CAPRI baseline is also fed by external (“expert”) forecasts, as well as by trend forecasts using data from the national ‘COCO’ and regionalized CAPREG databases (Chapters [[The Complete and Consistent Data Base (COCO) for the national scale]] and [[The Regionalised Data Base (CAPREG)]]). The purpose of these trend estimates is, on the one hand, to compare expert forecasts with a purely technical extrapolation of time series and, on the other hand, to provide a ‘safety net’ position in case no values from external projection are available. Usually the projections for a CAPRI baseline are a combination of expert data (e.g. from FAO, European Commission, World Bank, other research teams and even private entreprises) and simple statistical trends of data contained in the CAPRI database. +As is the case in other agencies, the CAPRI baseline is also fed by external (“expert”) forecasts, as well as by trend forecasts using data from the national ‘COCO’ and regionalized CAPREG databases (sections [[the capri data base#The Complete and Consistent Data Base (COCO) for the national scale]] and [[the capri data base#The Regionalised Data Base (CAPREG)]]). The purpose of these trend estimates is, on the one hand, to compare expert forecasts with a purely technical extrapolation of time series and, on the other hand, to provide a ‘safety net’ position in case no values from external projection are available. Usually the projections for a CAPRI baseline are a combination of expert data (e.g. from FAO, European Commission, World Bank, other research teams and even private entreprises) and simple statistical trends of data contained in the CAPRI database. 
  
 =====Overview of CAPRI baseline processes===== =====Overview of CAPRI baseline processes=====
Line 24: Line 24:
 The forecast tool CAPTRD uses the consolidated national and regional time series from COCO and CAPREG together with external projections from the AgLink model. The result is a projection for the key variables in the agricultural sector (activity levels and market balances) of all regions in the supply models (EU+) that is consistent with the supply model equations.  The forecast tool CAPTRD uses the consolidated national and regional time series from COCO and CAPREG together with external projections from the AgLink model. The result is a projection for the key variables in the agricultural sector (activity levels and market balances) of all regions in the supply models (EU+) that is consistent with the supply model equations. 
  
-  - Next task is the market model calibration. That task uses the same AgLink projections, complemented with the harmonized trade database GLOBAL (see section [[The global database components]]), the baseline policy files, the regional data for the base year (CAPREG) and the regional trends coming from CAPTRD. The output includes a market data set that is consistent with the regional trends, with calibrated parameters to steer behavioural functions, and adds producer prices to be used by the supply models.+  - Next task is the market model calibration. That task uses the same AgLink projections, complemented with the harmonized trade database GLOBAL (see section [[the capri data base#The global database components]]), the baseline policy files, the regional data for the base year (CAPREG) and the regional trends coming from CAPTRD. The output includes a market data set that is consistent with the regional trends, with calibrated parameters to steer behavioural functions, and adds producer prices to be used by the supply models.
   - The third task is the calibration of the supply models. This step also uses the regional data base, regional trends, and policy files, and calibrates various technical and behavioural economic parameters of the supply models so that the projected regional production is the optimal production at the producer prices coming from the market model calibration.   - The third task is the calibration of the supply models. This step also uses the regional data base, regional trends, and policy files, and calibrates various technical and behavioural economic parameters of the supply models so that the projected regional production is the optimal production at the producer prices coming from the market model calibration.
   - Finally, the modeller typically wants to perform a simulation using all the calibrated parameters and projected data. The purpose is twofold: to verify that the calibration of the baseline worked as intended and to generate all reports for inspection in the GUI.    - Finally, the modeller typically wants to perform a simulation using all the calibrated parameters and projected data. The purpose is twofold: to verify that the calibration of the baseline worked as intended and to generate all reports for inspection in the GUI. 
Line 120: Line 120:
 ===Constraints relating to market balances and yields=== ===Constraints relating to market balances and yields===
  
-Closed market balances (CAPTRD eq. MBAL_) define the first set of constraints and state that the sum of imports (IMPT) and production (GROF) must be equal to the sum of feed (FEDM) and seed (SEDM) use, human consumption (HCOM), processing (INDM,PRCM,BIOF), losses (LOSM) and exports (EXPT):+Closed market balances (CAPTRD eq. MBAL_ ) define the first set of constraints and state that the sum of imports (IMPT) and production (GROF) must be equal to the sum of feed (FEDM) and seed (SEDM) use, human consumption (HCOM), processing (INDM,PRCM,BIOF), losses (LOSM) and exports (EXPT):
  
 \begin{align} \begin{align}
Line 489: Line 489:
 **Figure 11: Pork production in Hungary as an example for merging medium run and long run a priori information in the CAPRI baseline approach** **Figure 11: Pork production in Hungary as an example for merging medium run and long run a priori information in the CAPRI baseline approach**
  
-{{::figure11.png?600|Source: own elaboration}} +{{::figure_11.png?600|Source: own elaboration}} 
  
 The example has been chosen because historical trends (and Aglink-COSIMO projections) on the one hand and long run expectations differ markedly. This is not unusual because medium run forecasts often give a stronger weight to recent production trends, often indicating a stagnating or declining production in the EU, whereas the long run studies tend to focus on the global growth of food demand in the coming decades. The simple trends (filled triangles) would evidently give unreasonable, even negative forecasts after 2030. Already the imposition of constraints from relationships to other series would stabilise the projections and imply some recovery after 2030 (filled squares). The year 2020 supports from Aglink-COSIMO (not shown) produces some upward correction of the step 2 results for 2020, giving a final projection (filled circles) of about 375 ktons for pork production in Hungary. This is also the starting point for the specification of the long run support (empty circles) which is a weighted average of two components. The first is a linear interpolation to the external projection from FAO/IFPRI for 2050 (empty triangles).  The second is a nonlinear damped extrapolation of the medium run projection beyond 2020 (empty squares). Changing the weight for the first component (FAO/IFPRI support) with increasing projection horizon creates a long run target value (empty circles) that gives a smooth transition from the medium to the long run. As the final projections (filled circles) tend to follow these target values, they show a turning point in the future evolution of pork production in Hungary that ultimately reflects the consideration of increasing global demand underlying the FAO/IFPRI projections.  The example has been chosen because historical trends (and Aglink-COSIMO projections) on the one hand and long run expectations differ markedly. This is not unusual because medium run forecasts often give a stronger weight to recent production trends, often indicating a stagnating or declining production in the EU, whereas the long run studies tend to focus on the global growth of food demand in the coming decades. The simple trends (filled triangles) would evidently give unreasonable, even negative forecasts after 2030. Already the imposition of constraints from relationships to other series would stabilise the projections and imply some recovery after 2030 (filled squares). The year 2020 supports from Aglink-COSIMO (not shown) produces some upward correction of the step 2 results for 2020, giving a final projection (filled circles) of about 375 ktons for pork production in Hungary. This is also the starting point for the specification of the long run support (empty circles) which is a weighted average of two components. The first is a linear interpolation to the external projection from FAO/IFPRI for 2050 (empty triangles).  The second is a nonlinear damped extrapolation of the medium run projection beyond 2020 (empty squares). Changing the weight for the first component (FAO/IFPRI support) with increasing projection horizon creates a long run target value (empty circles) that gives a smooth transition from the medium to the long run. As the final projections (filled circles) tend to follow these target values, they show a turning point in the future evolution of pork production in Hungary that ultimately reflects the consideration of increasing global demand underlying the FAO/IFPRI projections. 
Line 581: Line 581:
 Constraints, requirements, policies and other data loaded including base year and trends data (i.e., of res_BBCC.gdx  and trends_BBYY.gdx files) are subject to certain (mainly non-major) adjustments, additional calculations and assumptions that serve the purposes of data balancing, checking and provision of necessary for the calibration information. These include, for example, deleting positions not needed during the calibration run, (re-)assigning parameter names, deleting tiny quantities, checks for production without activity levels, possible empty projections and negative inland waters, setting the output coefficients for young animals equal to the ones at country (EU MSs, as young animals are not presented in the non-EU countries) level if missing at regional level, correcting fat and protein content of raw milk, assumption that second generation biofuels are produced 50/50 by agricultural residuals and new energy crops, etc. Constraints, requirements, policies and other data loaded including base year and trends data (i.e., of res_BBCC.gdx  and trends_BBYY.gdx files) are subject to certain (mainly non-major) adjustments, additional calculations and assumptions that serve the purposes of data balancing, checking and provision of necessary for the calibration information. These include, for example, deleting positions not needed during the calibration run, (re-)assigning parameter names, deleting tiny quantities, checks for production without activity levels, possible empty projections and negative inland waters, setting the output coefficients for young animals equal to the ones at country (EU MSs, as young animals are not presented in the non-EU countries) level if missing at regional level, correcting fat and protein content of raw milk, assumption that second generation biofuels are produced 50/50 by agricultural residuals and new energy crops, etc.
  
-Next, FAO data on the non-European countries as well as the trade flows among all of the countries (country trade blocks) accounted for in CAPRI are loaded. These FAO data together with the European data, which has already been subjected to certain adjustments as described in the previous paragraph, undergo the, so-called, data preparation step. This process is controlled by C:/.../CAPRI/gams/arm/market1.gms file which calls the C:/.../CAPRI/gams/arm/data_prep.gms file - specifically for this step. The data preparation step mostly refers to the base year and includes: among else, modification of GDP to fit the sum of final household expenditure, final government expenditure, gross capital formation and current account balance; import and export flows to be in line with net trade from production minus demand; scaling of demand side to fit production plus net trade; estimation of consumer prices for some countries, if missing; calculation of nutrient consumption per head and day as net of losses in distribution and households; scaling of outliers in prices etc. This step as well provides with estimation of yearly change factors beyond the base year: for prices, GDP, population, quantities and areas. Additionally, i) substitution elasticities (i.e., p_rhoX, where X indicates continuation of the parameter name) for bio-fuel feedstocks, feed, dairy products, sugar, table grapes, tobacco, cheese, fresh milk products, fruits, vegetables, distilled dried grains and rice for the CAPRI demand system((See section [[Market module for agricultural outputs#Overview on the market model]] on Overview of the market model "CAPRI comprises a two stage Armington system: on the top level, the composition of total demand from imports and domestic sales is determined, as a function of the relation between the domestic price and the average import price. The lower stage determines the import shares from different origins and defines the average import price.")), and ii) transformation elasticity for oil seed processing and land supply elasticities are assigned.+Next, FAO data on the non-European countries as well as the trade flows among all of the countries (country trade blocks) accounted for in CAPRI are loaded. These FAO data together with the European data, which has already been subjected to certain adjustments as described in the previous paragraph, undergo the, so-called, data preparation step. This process is controlled by C:/.../CAPRI/gams/arm/market1.gms file which calls the C:/.../CAPRI/gams/arm/data_prep.gms file - specifically for this step. The data preparation step mostly refers to the base year and includes: among else, modification of GDP to fit the sum of final household expenditure, final government expenditure, gross capital formation and current account balance; import and export flows to be in line with net trade from production minus demand; scaling of demand side to fit production plus net trade; estimation of consumer prices for some countries, if missing; calculation of nutrient consumption per head and day as net of losses in distribution and households; scaling of outliers in prices etc. This step as well provides with estimation of yearly change factors beyond the base year: for prices, GDP, population, quantities and areas. Additionally, i) substitution elasticities (i.e., p_rhoX, where X indicates continuation of the parameter name) for bio-fuel feedstocks, feed, dairy products, sugar, table grapes, tobacco, cheese, fresh milk products, fruits, vegetables, distilled dried grains and rice for the CAPRI demand system((See section [[scenario simulation#Overview on the market model]] on Overview of the market model "CAPRI comprises a two stage Armington system: on the top level, the composition of total demand from imports and domestic sales is determined, as a function of the relation between the domestic price and the average import price. The lower stage determines the import shares from different origins and defines the average import price.")), and ii) transformation elasticity for oil seed processing and land supply elasticities are assigned.
  
-Together with the data, equations of the CAPRI market module are loaded. They are described in detail in section [[Market module for agricultural outputs]]. These equations include behavioural functions for market demand including expenditure function, feed demand, blocks for dairy products, oilseeds processing and biofuels, netput functions, trade equations and balances, equations for prices and price transmission, functions for trade policies and for intervention stocks. There are additionally two crucial for data calibration functions: minimization of deviation of estimated values from the observed data. These two functions are described in detail later in this section.    +Together with the data, equations of the CAPRI market module are loaded. They are described in detail in section [[scenario simulation#Market module for agricultural outputs]]. These equations include behavioural functions for market demand including expenditure function, feed demand, blocks for dairy products, oilseeds processing and biofuels, netput functions, trade equations and balances, equations for prices and price transmission, functions for trade policies and for intervention stocks. There are additionally two crucial for data calibration functions: minimization of deviation of estimated values from the observed data. These two functions are described in detail later in this section.    
  
 ===Data balancing=== ===Data balancing===
  
-After data preparation, data calibration for the base (currently, 2012) and simulation years (currently, 2030) take place. The main file steering the data balancing process is C:/.../CAPRI/gams/arm/data_cal.gms, which in turned is included in arm/market1.gms. +After data preparation, data calibration for the base (currently, 2012) and simulation years (currently, 2030) take place. The main file steering the data balancing process is C:/.../CAPRI/gams/arm/data_cal.gms, which in turn is included in arm/market1.gms. 
  
 //Data balancing for the base year// \\ //Data balancing for the base year// \\
Line 593: Line 593:
 Data calibration for the base year aims at modifying the base year data to fit the system of equations of the market module. Some of the parameters defined in Stage I (e.g., p_rhoX) as well as parameter values and bounds defined at this stage are used. For example, starting points and corridors for quantity variables are set (e.g., calculating of world production to define correction corridor for calibration of production/demand/trade flows globally), global TRQ data are converted into ad valorem tariffs and checked for consistency and completeness, policy variables for the EU market model such as e.g., intervention stocks, are loaded. Also, starting values for prices of dairy products are estimated. In particular, a non-linear programming model is used, where the objective function is formulated as a Highest Posterior Density function. The value of this objective function equals sum of squared deviations of fat and protein prices, fat and protein content of milk products and processing margins of milk products from the respective means, weighted with the a priori variances. The means are defined as parameters based on the prices and fat and protein content of milk in the base year. The objective function is restricted by the balance: fat and protein of raw milk delivered to dairies shall equal fat and protein content of dairy products. The model is solved by minimizing the value of highest posterior density, hence minimizing the differences between the variables and their means. Prices of milk products are then defined as: product of fat and protein content and of far and protein prices plus processing margin. Furthermore, administrative prices for cereals and dairy products, and minimal import prices for cereals are constructed. Data calibration for the base year aims at modifying the base year data to fit the system of equations of the market module. Some of the parameters defined in Stage I (e.g., p_rhoX) as well as parameter values and bounds defined at this stage are used. For example, starting points and corridors for quantity variables are set (e.g., calculating of world production to define correction corridor for calibration of production/demand/trade flows globally), global TRQ data are converted into ad valorem tariffs and checked for consistency and completeness, policy variables for the EU market model such as e.g., intervention stocks, are loaded. Also, starting values for prices of dairy products are estimated. In particular, a non-linear programming model is used, where the objective function is formulated as a Highest Posterior Density function. The value of this objective function equals sum of squared deviations of fat and protein prices, fat and protein content of milk products and processing margins of milk products from the respective means, weighted with the a priori variances. The means are defined as parameters based on the prices and fat and protein content of milk in the base year. The objective function is restricted by the balance: fat and protein of raw milk delivered to dairies shall equal fat and protein content of dairy products. The model is solved by minimizing the value of highest posterior density, hence minimizing the differences between the variables and their means. Prices of milk products are then defined as: product of fat and protein content and of far and protein prices plus processing margin. Furthermore, administrative prices for cereals and dairy products, and minimal import prices for cereals are constructed.
  
-With the file C:/.../CAPRI/gams/arm/cal_models.gms, the so-called, models, used in calibration of data base are defined and solved. These models represent collection of equations, solutions of which provide with parameter values used for data calibration. The first model (MODEL m_trimSubsExports) calibrates the parameters of the function which defines the values of subsidized exports with and without the increase of market price above the administrative price. The second model (MODEL m_trimInterv) defines parameters of equations for intervention stock changes. It includes an objective function defined as a sum of: squared scaled difference of estimated and observed intervention stock changes and squared scaled parameters for behavioural function of intervention stock changes. This objective function is minimized subject to constraints represented by equations for intervention sales, probability for an undercut of administrative price, release from intervention stock, intervention stock changes and value of the intervention stock. The constraints are equations of the market model (see section [[Market module for agricultural outputs]]).+With the file C:/.../CAPRI/gams/arm/cal_models.gms, the so-called, models, used in calibration of data base are defined and solved. These models represent collection of equations, solutions of which provide with parameter values used for data calibration. The first model (MODEL m_trimSubsExports) calibrates the parameters of the function which defines the values of subsidized exports with and without the increase of market price above the administrative price. The second model (MODEL m_trimInterv) defines parameters of equations for intervention stock changes. It includes an objective function defined as a sum of: squared scaled difference of estimated and observed intervention stock changes and squared scaled parameters for behavioural function of intervention stock changes. This objective function is minimized subject to constraints represented by equations for intervention sales, probability for an undercut of administrative price, release from intervention stock, intervention stock changes and value of the intervention stock. The constraints are equations of the market model (see section [[scenario simulation#Market module for agricultural outputs]]).
  
 The model that calibrates base year data (MODEL m_calMarketBas) is defined in cal_models.gms file as well and includes almost all equations of the market model. In particular: equations for processing margin for dairy products (ProcMargM_), fat and protein balance between raw milk and dairy products (FatsProtBal_), processing margin for oilseeds ProcMargO_, processing yields of oilseeds (procYield_), 1st generation output of biofuels (prodBiof_) and total output of biofuels (MaprBiof_); __balancing and adding up equations__: equations which add production, processing demand, human consumption, feed demand quantities and quantities for processing from single countries (or block of countries) to trade blocks (ProdA_, ProcA_, HconA_, FeedUseA_, Proca_), adding up inside of the Armginton aggregate (total domestic consumption) (ArmBal1_), supply balance (SupBalM_) and imports and exports added up to bilateral trade flows (excluding diagonal element) (impQuant_); __price equations__: 1st stage Armington quantity aggregate (ArmFit1_), 2nd stage Armington quantity aggregate (ArmFit2_), import price relation to producer price (impPrice_), consumer price as average of domestic and import prices (arm1Price_), average price as average of different import prices (arm2Price_), average import price (arm2Val_), consumer price (Cpri_), producer price (PPri_), market price (PMrk_), average market price (MarketPriceAgg_); __trade and tariff equations__: aggregated trade flows (TradeFlowsAgg_), average transportation costs (TransportCostsAgg_), sum of imports under a non-allocated TRQ (TRQImports_), share of the tariff applied for the EU entry price system (EntryPriceDriver_), tariff specific entry price (tarSpecIfEntryPrice_), Cif price (cifPrice_), equation for defining levy (replaces tariff) in case of minimal border prices (FlexLevyNotCut_), cuting flexible levy by specific tariff if it exceeds the bound rate (FlexLevy_), tariffs under bi-lateral TRQs (trqSigmoidFunc_), specific tariffs as function of import quantities, if TRQ is present (tarSpec_, prefTriggerPrice_), tariffs under globally open (not bilaterally allocated) TRQs (tarSpecW_), ad valorem tariffs, if TRQ is present (tarAdval_), ad valorem tariff under not bilaterally allocated TRQs (tarAdValW_), export quantities from bi-lateral trade flows (expQuant_), exports included in the calculation of the export unit values excluding flows under double-zero agreements (nonDoubleZeroExports_), unit value exports (unitValueExports_, valSubsExports_), subsidised export values (EXPs_); __equations for intervention stocks__: probability weight for an undercut of administrative price (probMarketPriceUnderSafetyNet_), intervention sales (buyingToIntervStock_), intervention stock end size (intervStockLevel_), intervention stock changes (intervStockChange_), release from intervention stocks (releaseFromIntervStock_), aggregators for intervention purchases; equation for world market price (wldPrice_), and equation for minimization of deviation from given base year data and estimated data (NSSQ_). The model is solved by minimizing the SSQ value of NSSQ equation which is constrained by all of the rest of the equations included in the model. The model that calibrates base year data (MODEL m_calMarketBas) is defined in cal_models.gms file as well and includes almost all equations of the market model. In particular: equations for processing margin for dairy products (ProcMargM_), fat and protein balance between raw milk and dairy products (FatsProtBal_), processing margin for oilseeds ProcMargO_, processing yields of oilseeds (procYield_), 1st generation output of biofuels (prodBiof_) and total output of biofuels (MaprBiof_); __balancing and adding up equations__: equations which add production, processing demand, human consumption, feed demand quantities and quantities for processing from single countries (or block of countries) to trade blocks (ProdA_, ProcA_, HconA_, FeedUseA_, Proca_), adding up inside of the Armginton aggregate (total domestic consumption) (ArmBal1_), supply balance (SupBalM_) and imports and exports added up to bilateral trade flows (excluding diagonal element) (impQuant_); __price equations__: 1st stage Armington quantity aggregate (ArmFit1_), 2nd stage Armington quantity aggregate (ArmFit2_), import price relation to producer price (impPrice_), consumer price as average of domestic and import prices (arm1Price_), average price as average of different import prices (arm2Price_), average import price (arm2Val_), consumer price (Cpri_), producer price (PPri_), market price (PMrk_), average market price (MarketPriceAgg_); __trade and tariff equations__: aggregated trade flows (TradeFlowsAgg_), average transportation costs (TransportCostsAgg_), sum of imports under a non-allocated TRQ (TRQImports_), share of the tariff applied for the EU entry price system (EntryPriceDriver_), tariff specific entry price (tarSpecIfEntryPrice_), Cif price (cifPrice_), equation for defining levy (replaces tariff) in case of minimal border prices (FlexLevyNotCut_), cuting flexible levy by specific tariff if it exceeds the bound rate (FlexLevy_), tariffs under bi-lateral TRQs (trqSigmoidFunc_), specific tariffs as function of import quantities, if TRQ is present (tarSpec_, prefTriggerPrice_), tariffs under globally open (not bilaterally allocated) TRQs (tarSpecW_), ad valorem tariffs, if TRQ is present (tarAdval_), ad valorem tariff under not bilaterally allocated TRQs (tarAdValW_), export quantities from bi-lateral trade flows (expQuant_), exports included in the calculation of the export unit values excluding flows under double-zero agreements (nonDoubleZeroExports_), unit value exports (unitValueExports_, valSubsExports_), subsidised export values (EXPs_); __equations for intervention stocks__: probability weight for an undercut of administrative price (probMarketPriceUnderSafetyNet_), intervention sales (buyingToIntervStock_), intervention stock end size (intervStockLevel_), intervention stock changes (intervStockChange_), release from intervention stocks (releaseFromIntervStock_), aggregators for intervention purchases; equation for world market price (wldPrice_), and equation for minimization of deviation from given base year data and estimated data (NSSQ_). The model is solved by minimizing the SSQ value of NSSQ equation which is constrained by all of the rest of the equations included in the model.
Line 603: Line 603:
 \end{equation} \end{equation}
  
-where SSQ is an artificial variable to be minimized, indices RMS, XXX, BAS and i indicate, respectively, regions, commodities, base year and activities (e.g., production, processing, imports etc.), and p_weight is a parameter of weights between 1 and 100 assigned to regions and activities. These weights are necessary to achieve plausible calibrated values and their specification is the outcome of a trial and error process, inspecting results from data calibration and retrying. They depend on the results of global database and trends generation. On the right hand-side of the equation v stands for a variable to be estimated and DATA – for base year data already adjusted at the data preparation and balancing stage. Hence with this equation squared sum over regions and commodities of differences between estimated and observed values (and or quantities), these differences being scaled by the observed data times the weight parameters, is minimized. Respectively, calibrated base year data fits the system of the market equations, given certain parameter values, and resembles the observed data as closely as possible. The activities implied under the index include quantities of production, human consumption, feed, processing, processed to biofuels, import and export, producer, consumer and market prices, difference between market prices and import prices to reduce differences between physical and Armington aggregation, consolidated gap between producer and market prices, processing margin, trade flows and transport costs.+where SSQ is an artificial variable to be minimized, indices RMS, XXX, BAS and i indicate, respectively, regions, commodities, base year and activities (e.g., production, processing, imports etc.), and p_weight is a parameter of weights between 1 and 100 assigned to regions and activities. These weights are necessary to achieve plausible calibrated values and their specification is the outcome of a trial and error process, inspecting results from data calibration and retrying. They depend on the results of global database and trends generation. On the right hand-side of the equation v stands for a variable to be estimated and DATA – for base year data already adjusted at the data preparation and balancing stage. Hence with this equation squared sum over regions and commodities of differences between estimated and observed values (and or quantities), these differences being scaled by the observed data times the weight parameters, is minimized. Respectively, calibrated base year data fits the system of the market equations, given certain parameter values, and resembles the observed data as closely as possible. The activities implied under the index include quantities of production, human consumption, feed, processing, processed to biofuels, import and export, producer, consumer and market prices, difference between market prices and import prices to reduce differences between physical and Armington aggregation, consolidated gap between producer and market prices, processing margin, trade flows and transport costs.
  
 The process of model solving is navigated with C:/.../CAPRI/gams/arm/data_fit.gms file. Its main function is to assure model solving by keeping the market balances closed and price system consistent. Because of the very large number of equations with the exact similar number of variables (36 thsds) that makes the system of equations square, as well as non-linear formulation of some of the equations, it is very likely that infeasibilities will occur during the model solving. To ensure the feasibility as far as possible, code elements such as widening of variable bounds, once they become binding, reducing non-smoothness of the functional forms and introduction of slack variables are introduced. More detailed information on this process can be found in a technical document by Wolfgang Britz and Heinz-Peter Witzke //Infeasibilities in the market model of CAPRI – how they are dealt with// at [[https://www.capri-model.org/docs/infes.pdf]]. The process of model solving is navigated with C:/.../CAPRI/gams/arm/data_fit.gms file. Its main function is to assure model solving by keeping the market balances closed and price system consistent. Because of the very large number of equations with the exact similar number of variables (36 thsds) that makes the system of equations square, as well as non-linear formulation of some of the equations, it is very likely that infeasibilities will occur during the model solving. To ensure the feasibility as far as possible, code elements such as widening of variable bounds, once they become binding, reducing non-smoothness of the functional forms and introduction of slack variables are introduced. More detailed information on this process can be found in a technical document by Wolfgang Britz and Heinz-Peter Witzke //Infeasibilities in the market model of CAPRI – how they are dealt with// at [[https://www.capri-model.org/docs/infes.pdf]].
Line 609: Line 609:
 After solving the MODEL m_calMarketBas, the calibrated data are stored, new producer prices for agricultural outputs are set, sugar beet prices as a function of – sugar market price – sugar export price (pre-reform) or ethanol market price (post-reform) – processing yield (specific to CUR to calibrate to any set of projected beet prices) – levying model for A- and B- sugar (pre-reform) are calculated, share and shift parameters of CES-functions used in the Armington approach to determine import shares as a function of import prices are defined (file C:/.../CAPRI/gams/arm/cal_armington.gms). Furthermore, energy conversion factors for animal products are defined with MODEL m_fitFeedConv (in file C:/.../CAPRI/gams/arm/feed_conv_decl.gms). After solving the MODEL m_calMarketBas, the calibrated data are stored, new producer prices for agricultural outputs are set, sugar beet prices as a function of – sugar market price – sugar export price (pre-reform) or ethanol market price (post-reform) – processing yield (specific to CUR to calibrate to any set of projected beet prices) – levying model for A- and B- sugar (pre-reform) are calculated, share and shift parameters of CES-functions used in the Armington approach to determine import shares as a function of import prices are defined (file C:/.../CAPRI/gams/arm/cal_armington.gms). Furthermore, energy conversion factors for animal products are defined with MODEL m_fitFeedConv (in file C:/.../CAPRI/gams/arm/feed_conv_decl.gms).
  
-Data balancing for the simulation year \\+//Data balancing for the simulation year// \\ 
 Aim of data calibration for the simulation year aims at generating such quantity, price and other market values (see list below) for the simulation year that they fit the system of equations of the market module and variable and parameter lower and upper bounds, as well as remain as close as possible to the values to which they are calibrated (e.g., trends, estimated with growth rates from the base year, Aglink-COSIMO values, GLOBIOM values etc.). Thus process, basically, follows similar approach as for the base year. There are, however, a few differences. The main is that the model used for calibration is MODEL m_calMarketFin. As the model for base year calibration (MODEL m_calMarketBas), it is defined in cal_models.gms file and includes similar equations of the market model with the exception of NSSQ_ equation. The latter equation is replaced by NSSQ1_. Its major difference from NSSQ_ is that DATA parameter includes not values of the base year, but values projected in trend generation step for some of the factors and values shifted to the simulation year based on assumptions or growth rates for the other factors. Thus, it is used for minimizing the differences between estimated and projected (with trend generation step or growth rates) values of the variables in question. Another difference of NSSQ1_ with NSSQ_ is that it includes the differences in intervention stock changes and excludes the differences in consumer prices and gaps between producer and market prices.  Aim of data calibration for the simulation year aims at generating such quantity, price and other market values (see list below) for the simulation year that they fit the system of equations of the market module and variable and parameter lower and upper bounds, as well as remain as close as possible to the values to which they are calibrated (e.g., trends, estimated with growth rates from the base year, Aglink-COSIMO values, GLOBIOM values etc.). Thus process, basically, follows similar approach as for the base year. There are, however, a few differences. The main is that the model used for calibration is MODEL m_calMarketFin. As the model for base year calibration (MODEL m_calMarketBas), it is defined in cal_models.gms file and includes similar equations of the market model with the exception of NSSQ_ equation. The latter equation is replaced by NSSQ1_. Its major difference from NSSQ_ is that DATA parameter includes not values of the base year, but values projected in trend generation step for some of the factors and values shifted to the simulation year based on assumptions or growth rates for the other factors. Thus, it is used for minimizing the differences between estimated and projected (with trend generation step or growth rates) values of the variables in question. Another difference of NSSQ1_ with NSSQ_ is that it includes the differences in intervention stock changes and excludes the differences in consumer prices and gaps between producer and market prices. 
  
Line 625: Line 626:
 At first, parameters for land use market are calculated based on data from FAO world food market model. Among them are land use classes, crop yields, land demand of non-crop activities, areas used for fodder and average land price, total energy use for feeding and producer price of feed. Next, starting elasticity values, as well as their lower and upper bounds are loaded (e.g., demand elasticities used in SPEL/MFSS). Finally, elasticities are trimmed. At first, parameters for land use market are calculated based on data from FAO world food market model. Among them are land use classes, crop yields, land demand of non-crop activities, areas used for fodder and average land price, total energy use for feeding and producer price of feed. Next, starting elasticity values, as well as their lower and upper bounds are loaded (e.g., demand elasticities used in SPEL/MFSS). Finally, elasticities are trimmed.
  
-Elasticities trimming is controlled by C:/.../CAPRI/gams/arm/trim_par.gms file. The elasticity groups are: for calibration of demand and supply systems, feed demand system, oilseeds crush, oil processing and dairy industry. Elasticities of supply system, oilseeds crushing, oil processing and dairy industries, as well as for feed demand, are estimated with MODEL m_trimElas. It is solved by minimising absolute squares between given and calibrated elasticities including land elasticities (FitElas_) subject to the following constraints: marginal effects from price and quantity for current elasticity estimate (Hess_), homogeneity of degree zero for elasticities in prices (HomogN_), Cholesky decomposition of marginal effects to ensure correct curvature (Chol_), Ensure that own price elasticity exceeds yield elasticity * 1.5 (YieldElas_) and elasticities for total energy and protein intake from feeding (ReqsElas_). +Elasticities trimming is controlled by C:/.../CAPRI/gams/arm/trim_par.gms file. The elasticity groups are: for calibration of demand and supply systems, feed demand system, oilseeds crush, oil processing and dairy industry. Elasticities of supply system, oilseeds crushing, oil processing and dairy industries, as well as for feed demand, are estimated with MODEL m_trimElas. It is solved by minimising absolute squares between given and calibrated elasticities including land elasticities (FitElas_) subject to the following constraints: marginal effects from price and quantity for current elasticity estimate (Hess_), homogeneity of degree zero for elasticities in prices (HomogN_), Cholesky decomposition of marginal effects to ensure correct curvature (Chol_), Ensure that own price elasticity exceeds (yield elasticity * 1.5(YieldElas_) and elasticities for total energy and protein intake from feeding (ReqsElas_). 
  
 Human consumption elasticities are estimated with MODEL m_trimDem by minimizing absolute squares between given and calibrated elasticities (FitElas_). Apart from the objective function the model includes several equations related to the definition of the demand system as Generalized Leontief, homogeniety of degree zero for elasticities in prices, additivity of income elasticities weighted with budget shares and elasticities for total calorie intake.  Human consumption elasticities are estimated with MODEL m_trimDem by minimizing absolute squares between given and calibrated elasticities (FitElas_). Apart from the objective function the model includes several equations related to the definition of the demand system as Generalized Leontief, homogeniety of degree zero for elasticities in prices, additivity of income elasticities weighted with budget shares and elasticities for total calorie intake. 
Line 637: Line 638:
 The file C:/.../CAPRI/gams/capmod/def_fert_and_requirements.gms defines animal nutrient requirements and the nutrient requirements of the crops given trend forecasted yields. In particular, feed input coefficients are defined and calibrated, days in production process of fattening are defined, and manure output is taken into consideration as an input for fertilizer calibration. Fertilizer calibration is basically a merge of trend based forecasts from the ex-post CAPREG results. The fertilizer need is calculated as a function of yield, and adjusted according to the exogenous assumptions. Furthermore, crop nutrient need factors from trends are scaled and logistic function is used to calculate average growth rate of fertilizer use. The calculations must as well comply with the fertilizer equations of the supply model. The file C:/.../CAPRI/gams/capmod/def_fert_and_requirements.gms defines animal nutrient requirements and the nutrient requirements of the crops given trend forecasted yields. In particular, feed input coefficients are defined and calibrated, days in production process of fattening are defined, and manure output is taken into consideration as an input for fertilizer calibration. Fertilizer calibration is basically a merge of trend based forecasts from the ex-post CAPREG results. The fertilizer need is calculated as a function of yield, and adjusted according to the exogenous assumptions. Furthermore, crop nutrient need factors from trends are scaled and logistic function is used to calculate average growth rate of fertilizer use. The calculations must as well comply with the fertilizer equations of the supply model.
  
-====tage IV: Initialization and test run====+====Stage IV: Initialization and test run====
  
 After the behavioural blocks of the market model are calibrated (one-by-one), the whole model should be also tested for being correctly calibrated. In essence, the test initializes the model with the data against the model was calibrated, and then executes/solves the market model. In theory, a perfectly calibrated model can be solved in one single iteration, without adjustments in the values of the model variables. That is why the iteration limit is technically set to zero (i.e. not allowing for adjustment in the model variables) for the test solve. In practice, a number of infeasibilities might exist due to the accuracy of the numerical solution. But infeasibilities stemming from rounding errors must be small, so the sum of all infeasibilities gives a good indication on the quality of the model calibration.  After the behavioural blocks of the market model are calibrated (one-by-one), the whole model should be also tested for being correctly calibrated. In essence, the test initializes the model with the data against the model was calibrated, and then executes/solves the market model. In theory, a perfectly calibrated model can be solved in one single iteration, without adjustments in the values of the model variables. That is why the iteration limit is technically set to zero (i.e. not allowing for adjustment in the model variables) for the test solve. In practice, a number of infeasibilities might exist due to the accuracy of the numerical solution. But infeasibilities stemming from rounding errors must be small, so the sum of all infeasibilities gives a good indication on the quality of the model calibration. 
Line 653: Line 654:
 ====Introduction==== ====Introduction====
  
-The supply side models of the CAPRI simulation tool are programming models with an objective function. If we want the optimal solution to coincide with the forecast procuced by the projection tools of CAPTRD, we need to ensure that first and second order optimality conditions (marginal revenues equal to marginal costs, all constraints feasible, and the solution is a maximum point) hold in the calibration point for each of the NUTS 2 or farm type models. The consequences regarding the calibration are threefold:+The supply side models of the CAPRI simulation tool are programming models with an objective function. If we want the optimal solution to coincide with the forecast produced by the projection tools of CAPTRD, we need to ensure that first and second order optimality conditions (marginal revenues equal to marginal costs, all constraints feasible, and the solution is a maximum point) hold in the calibration point for each of the NUTS 2 or farm type models. The consequences regarding the calibration are threefold:
  
   - Elements not projected so far but entering the constraints of the supply models (e.g. feed, fertilization) must be defined in such way that constraints are feasible,   - Elements not projected so far but entering the constraints of the supply models (e.g. feed, fertilization) must be defined in such way that constraints are feasible,
baseline_generation.1587878319.txt.gz · Last modified: 2022/11/07 10:23 (external edit)

Except where otherwise noted, content on this wiki is licensed under the following license: CC0 1.0 Universal
CC0 1.0 Universal Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki