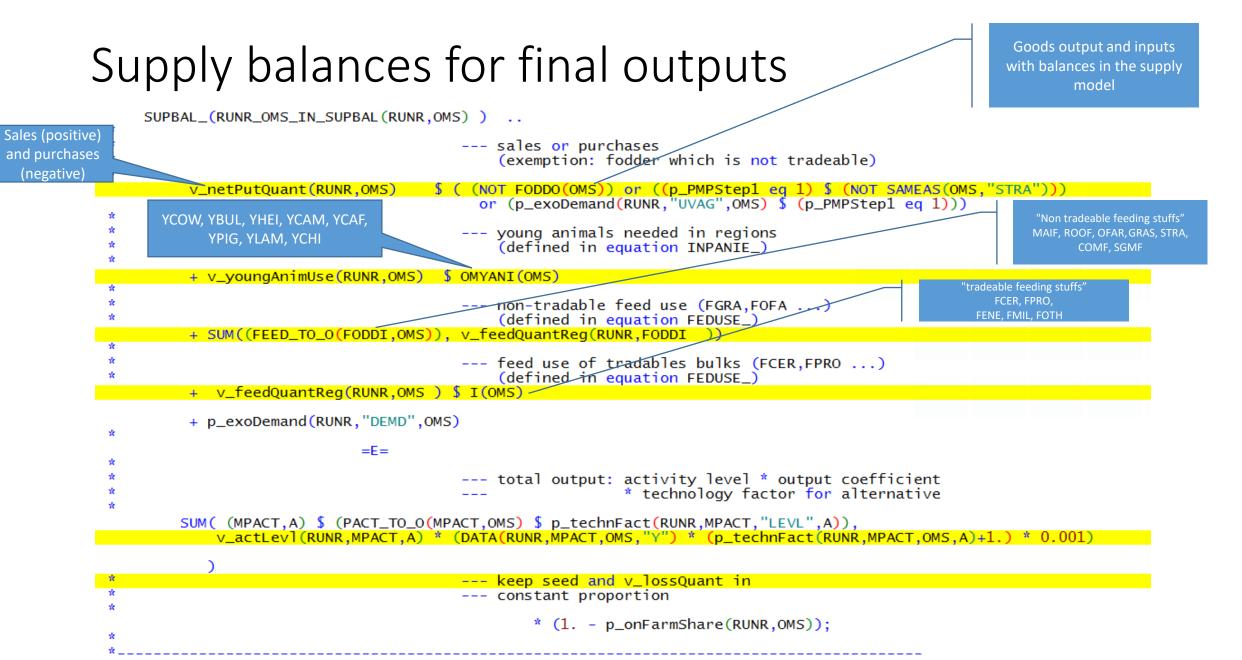

1. The structure of the supply model in CAPRI

The supply model

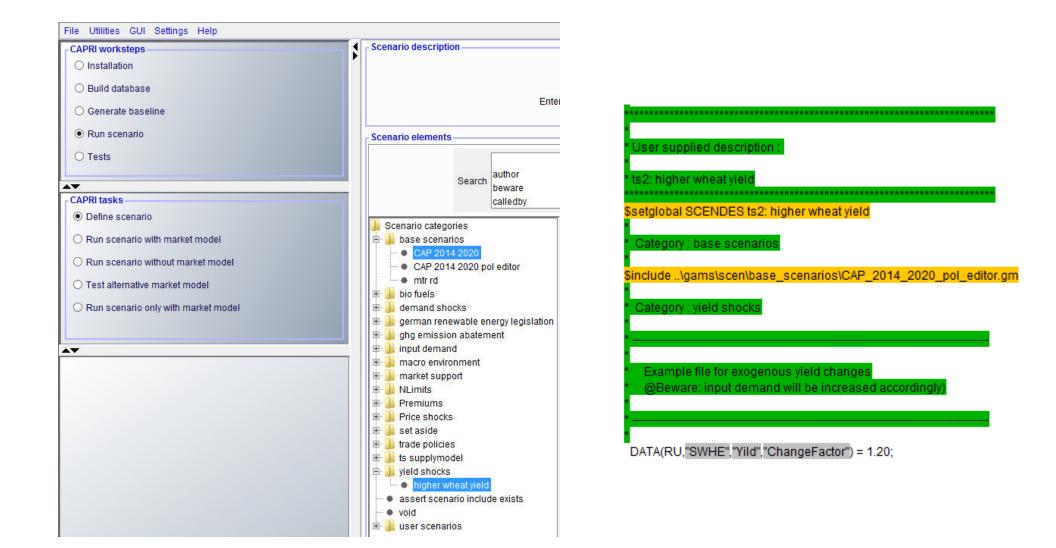
- Structure of GAMS file capmod.gms
 - General structure
 - Important sections and key files
 - Two modus for capmod with and without market model
- The suppy_model.gms file
 - Equations, Variable , Parameters, Sets



\$include 'supply\def_supply_model_par.gms';

@purpose : Define sets, parameters, va	ariables etc. used in supply model	MODEL m_capMod/LINEAR_,OBJEQF_,
PARAMETER		SUPBAL_, INPANI_,
<pre>p_linobjeCont(RALL,PACT,A) p_nitrBalance(*,*) p_nitrFact p_NV2Share(Rall,*)</pre>	"Costs and revenues for activities not covered by constraints" "Nitrogen balance parameter" "Nitrogen balance parameter" "Shares of NVZ area in total and implementation shares for balanced fertilisation"	* feeding block
p_maxFeedShare(RALL,PACT,A,FEED %addt p_minFeedShare(RALL,PACT,A,FEED %addt p_animProdDays	<pre>imedim_ast%) "Maximum shares dry matter intake for each feedingstuff"</pre>	REQSE_,REQSN_, MAXSHR_,MINSHR_, FEDUSE_,
p_minShareMinFert(RALL,PACT,*,FNUT) p_maxShareMinFert(RALL,PACT,*,FNUT) p_nutContCropOutput(0,FNUT)	"Minimum share of mineral on total fertilizer input" "Maximum share of mineral on total fertilizer input" "Nutrient retention from harvested material"	* fertilization block
p_feedQuant(*,* %addtimedim_ast%)	"Ammount of feed use in current aggregate to trim"	* NUTNED_,NUTMIN_,
TJ TREND p_PMPStep1	"If set to 1, allow LEVL.up = LEVL.lo in first PMP step"	fertDistExcr_, fertDistMine_,
<pre>p_pmpCnst(RALL,COLS,A) p_pmpQuadPact(RALL,COLS,COLS) p_pmpQuadLandTypes(RALL,COLS,COLS) p_pmpQuadTechn(RALL,COLS,A,A)</pre>	"PMP parameter for linear own area cost effect" "PMP parameter for cross-crop-groups quadratic PMP effects" "PMP parameter for land markets" "PMP parameter for own area v_sumOfPmpTermsLevlstic cost effect"	fertDistCres_, ManureNPK_,
model variables		* cost function
VARIABLES v_obje v_actLevl(RALL,COLS,*)	"Objective value" "Level of production activities in 1000 ha or 1000 heads"	* GRPLEVL_,QUADRA_
v_youngAnimUse(RALL,OM) v_feedQuantReg(RALL,* %addtimedim_z v_feedInpCoeff(RALL,MAACT,A,* %add v_pmpCostFeedPerAnim (RALL,MAACT,A)	"Intrasectoral use of young animals in 1000 heads" ast%) "Regional feed use in 1000 t per year and herd" timedim_ast%) "Feeding per head and year in kg" "Per unit PMP feed cost"	* set-aside * SETA_
<pre>v_netPutQuant(RALL,*) v_nosSQuant(RALL,ROWS %addtimedim_a v_nutAvailFactExcr(RALL,FOUT,A) v_nutAvailFactCRes(RALL,FOUT,A) v_cropNutNeedMultFact(RALL,FNUT,*) v_cropNutNeedAdfact(RALL,FNUT)</pre>	"Selling and buying activities in 1000 t" ast%) "Losses of straw and organic fertiliser in 1000 t" "Nutrient availability factor in manure" "Nutrient availability factor for crop residues" "Multiplative Nutrient need factor for crops, per region and technology" "Constant nutrient need factor for crops, per region"	SETAN_ MXSETA_ NONF_ sumEntl_
v_animReq (RALL,*,A,* %addtimedim_a v_linobjePart(RALL) v_sumOfPmpTermsLevls v_sumOfPmpTermsFeed	"Linear part of objective" "Objective contribution of PMP terms activities" "Objective contribution of PMP terms feeding"	overShotEntl_ greenOverShot_
v_pmpCostLandMarket v_landSupCost(RALL) v_labCap(RALL)	"Objective contribution of land market" "Cost for supplying land to agriculture"	fixTechfShares_
t de la constante de la constan	"Global warming emissions" "Mutrient surpluses in 1000 tons" JTD "Correction of minimum application rates of mineral fertilizer"	nGrpLevl_, nMax_,
v_fertDist(RALL,*,FNUT,*) v_ManureNPK(RALL,*)	"Distribution of organic and mineral N to groups of crops" "Total N.P.K at tail net of gaseous losses"	lsDensMax_,
v_watUse(RALL,*) v_watCos(RALL,*)	"Regional water use in 1000 m3" "Regional water cost in 1000 euros"	SalesSugb_,SIGMSugb_,cdfSugb_,pdfSugb_,SugbRev_, netPutQuantSugb_
v_SIGMSudp(RALL,A) v_cdfSudp(RALL,A,Qut_A_AB) v_pdfSudp(RALL,A,Qut_A_AB) v_sudpRev(RALL,A) v_salesSudp(RALL,A) v_salesSudp(RALL,A)	"Sales multiplied with VCOEF (??)" "Cummulative probability for the production to be lower then A or A+B quotas" "point probability for production being equal to A res. A+B quota" "Revenues from sugar beet A,B,C sales" "Sugar beet sales per technology" "Fix costs and premiums to generate compensated supply response"	winterCover_ ecoSetAside_ cropDivGreening_ /:
v_nonfSlack(RALL,A) v_corfSetr(RALL)	"Slack which allows to turn non-food into a unequality" "Correction factor to render set-aside binding"	
		* same model as m_capMod, with pmp s and land constraint included*
		<pre>* MODEL m_capModQ/m_capMod, * add the cost function terms for feeding QUADRF_ QUADRFI_ * add the obligatory set-aside constraints, missing in calibration to obtain expert dual * add land balances, missing in calibration to obtain expert dual LandMarket_ LandBal_ labCap_ e_uaar e_asym e_landSupCost_</pre>

2. Important modules in the supply model exemplified by different scenarios



Young animal balance

* *	adding up use of young animals
	INPANI_(RUNR,IYANI) \$ SUM (0_TO_YANI(OMYANI,IYANI) \$ (v_youngAnimUse.lo(RUNR,OMYANI) ne v_youngAnimUse.up(RUNR,OMYANI)),1)
и 4 4 4	young animals needed by region RUNR
	SUM (O_TO_YANI(OMYANI,IYANI), v_youngAnimUse(RUNR,OMYANI))
и 4 4	=E= total need added over activities and alternatives
*	0.001 * SUM(MAACT \$ (p_technFact(RUNR,MAACT,"LEVL","T") \$ PACT_TO_I(MAACT,IYANI)),
*	v_actLevl(RUNR,MAACT,"T") * DATA(RUNR,MAACT,IYANI,"Y") * (p_technFact(RUNR,MAACT,IYANI,"T")+1.));

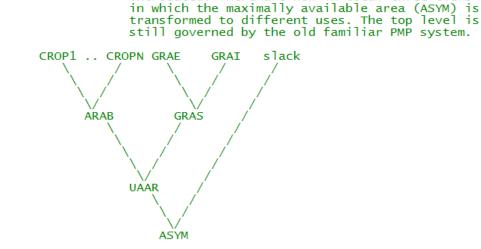
Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Balance of products and young animals	EQU SUPBAL_ Supply balances for final outputs EQU INPANI_ Input balances for young animals regional	v_netputQunt v_YoungAnimUse V_feedQuantReg V_actLevl	Yields DATA(RUNR,MPACT, OMS,"Y") young animal requirements DATA(RUNR,MAACT,I YANI,"Y") p_exoDemand	Yield, Young animal input p_exoDemand Exercise ts_scenario

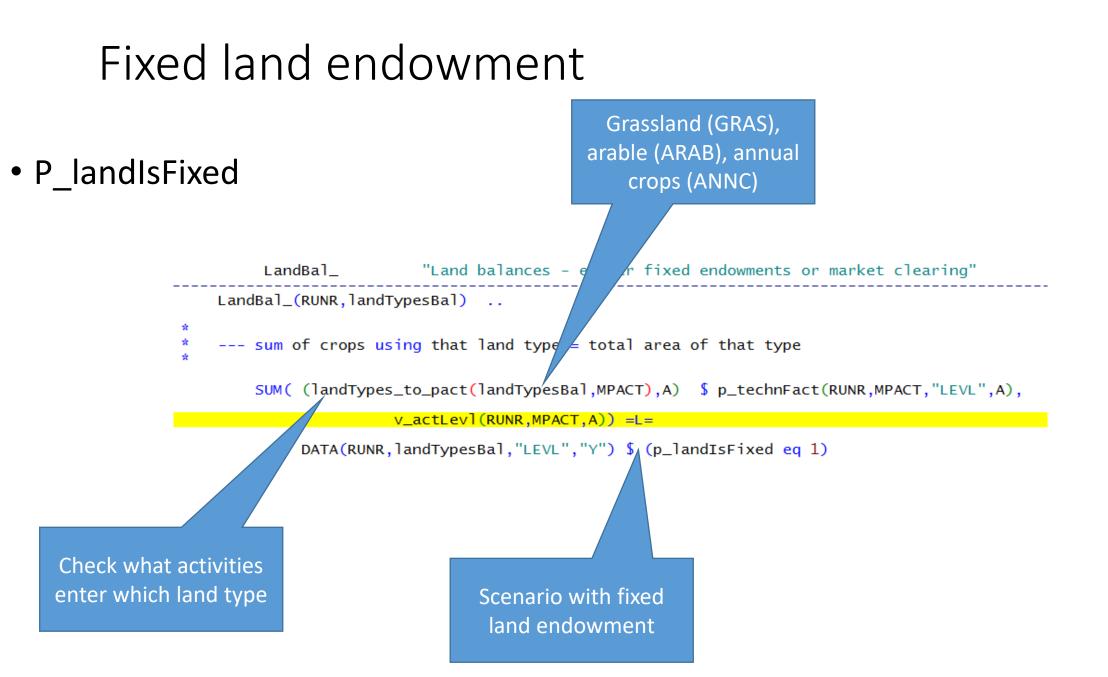
Scenario: Wheat yield increase by 20%

Selection of baseline scenario (nochange) and yield increase scenario (ts2)

CAPRI worksteps	Result exploitation			
O Installation			Scenario 1	res_2_1230userScens_nochange
O Build database				
O Generate baseline		EU27"	Scenario 2	res_2_1230userScens_ts2
Run scenario	EL "(Greece" alv"	Scenario 3	
-		'Sweden"	Scenario 4	~
O Tests ✓	Country selection	'Hungary"		
CAPRI tasks	EE '	'Estonia"	Scenario 5	×
O Define scenario		"Malta" "Turkey"	Scenario 6	~ ~
O Run scenario with market model		'Montenegro"	Ocenaria 7	
Run scenario without market model	< 11		Scenario 7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Regional lev	/el 029	Scenario 8	÷
O Test alternative market model	Base year select		Scenario 9	~
O Run scenario only with market model	Dase year select			
		0001020304050607	Scenario 10	·
		0809101112131415		
		1617181920212223	Scenario 11	×
		24252627282930 <mark>31</mark>	Scenario 12	
	Simulation year selection	32 33 34 35 36 37 38 39	Scenario 12	
		40 41 42 43 44 45 46 47	Scenario 13	×
		48 49 50 51 52 53 54 55		
		56 57 58 59 60 61 62 63	Scenario 14	×
		64656667686970		
			Scenario 15	×

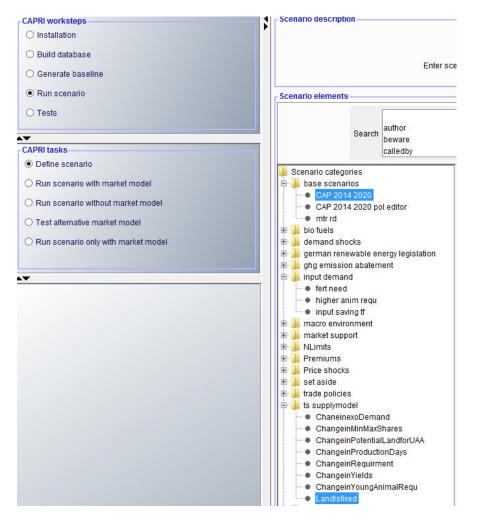
Results: Yield and income changes for wheat yield increase (+20%)


🛃 Supply details [0]						
Region	Year					
Denmark	✓ 2030					
5	nochange		ts2			
¥ ¥	Income [Euro/ha or head]	Yield [kg, Const EU or 1/1000 head/ha]	Income [Euro/ha or head]	Yield [kg, Const EU or 1/1000 head/ha]		
Cereals	257.58	1179.91	309.19 20.04%	1303.72 10.49%		
Oilseeds	474.62	1593.05	473.88 -0.15%			
Other arable crops	-76.58	4396.95	- 70.58 7.83%			
Vegetables and Permanent crops	41484.92	51814.03	41474.30 -0.03%			
Fodder activities	203.79	1022.21	206.67 1.41%			
Set aside and fallow land	332.83		332.22 -0.18%			
All cattle activities	2270.96	2730.27	2261.16 -0.43%			
Beef meat activities	696.97	886.47	692.00 -0.71%			
All Dairy	2482.60	2978.20	2472.08 -0.42%			
Other animals	407.62	1797.02	407.88 0.06%			


Results: Yield and income changes for wheat yield increase (+20%)

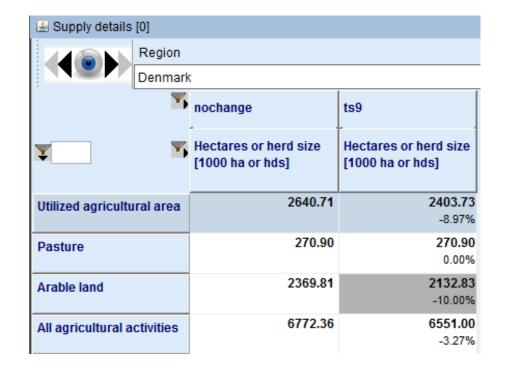
🛃 Supply details [0]							
	Region			Year			
	Denmark			✓ 2030			
5	nochange		ts2				
¥. 5	Income [Euro/ha or head]	Yield [kg, Const EU or 1/1000 head/ha]	Income [Euro/ha or head]	Yield [kg, Const EU or 1/1000 head/ha]			
Cereals	257.58	1179.91	309.19 20.04%	1303.72 10.49%			
Soft wheat	272.07	7725.17	388.20 42.69%	9228.73 19.46%			
Rye and Meslin	302.34	6786.33	301.45 -0.29%				
Barley	223.47	6234.14	222.66 -0.36%	6234.37 0.00%			
Oats	229.86	5354.56	229.36 -0.22%	5351.06 -0.07%			
Grain Maize	609.41	7648.96	608.62 -0.13%	7649.12 0.00%			
Other cereals	475.64	6026.49	474.84 -0.17%	6026.65 0.00%			

Land Balance

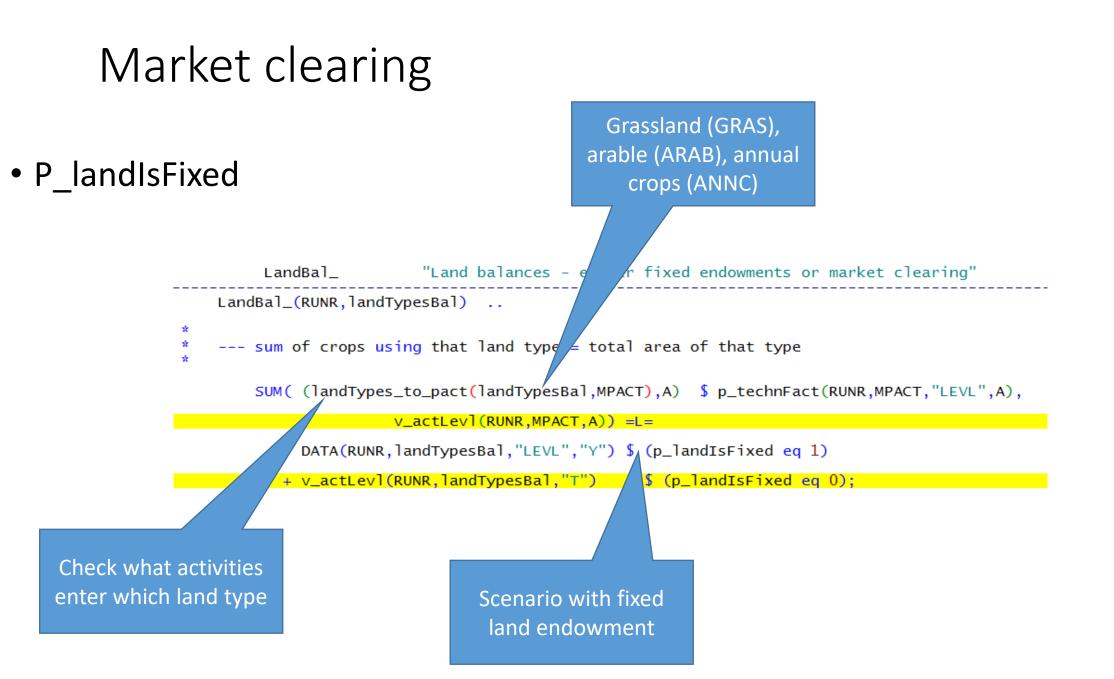

- Two modes:
 - endowment fixed for grass and arable land (p_landIsFixed eq 1)
 - Via land supply function NONUAA in UAA -> in ARAB and GRAS (default setting)
 Changes 02.11.09 T Jansson New land supply function with nested decisions introduced. There are now in total three tiers

Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Land Balance	LandBal_ Fixed endowment of market clearing	v_actLevl(Landt ypes,"LEVL")	p_landisfixed DATA (RU, landtypes, "Levl","Y")	Exercise

Scenario: Reduction of available arable land by 10%

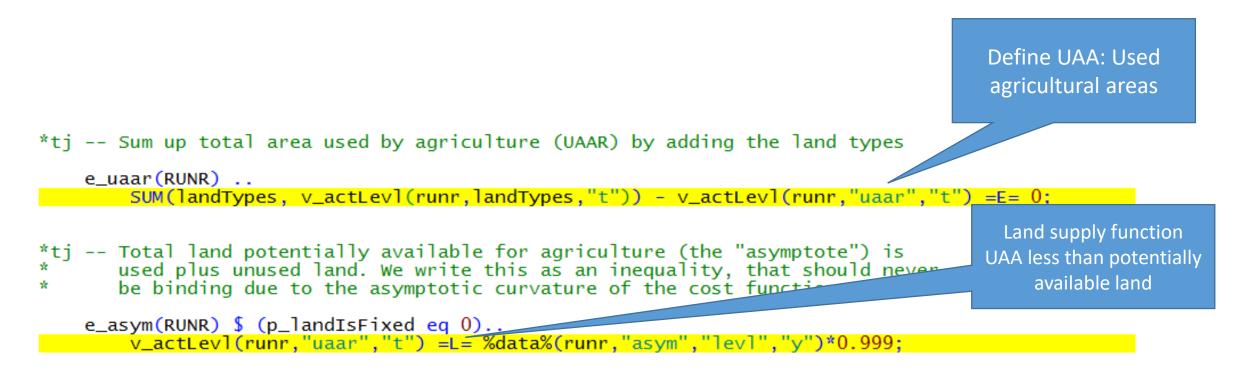

*********		*********
\$setglob *	al SCENDES ts9: land is fixed	
* Baselii *	ne scenario	
\$include	lgams\scen\base_scenarios\CAP_2014_2020_	pol_edito
* Catego	ry : ts supplymodel	
********	******	*******
\$ontext		
ontext		
	project	
CAPRI		
CAPRI	project ile : LANDISFIXED.GMS	
CAPRI GAMS f		
CAPRI GAMS f @purp @auth	ile : LANDISFIXED.GMS ose : fix land endowment for training session or : A. Gocht	
CAPRI GAMS f @purp @autho @date	ile : LANDISFIXED.GMS ose : fix land endowment for training session or : A. Gocht : 11.06.18	
CAPRI GAMS f @purp @autho @date @refDo	ile : LANDISFIXED.GMS ose : fix land endowment for training session or : A. Gocht : 11.06.18 ic :	
CAPRI GAMS f @purpe @autho @date @refDo @seeA	ile : LANDISFIXED.GMS ose : fix land endowment for training session or : A. Gocht : 11.06.18 oc : Iso :	
CAPRI GAMS f @purpe @autho @date @refDo @seeA	ile : LANDISFIXED.GMS ose : fix land endowment for training session or : A. Gocht : 11.06.18 oc :	

DATA(RU, "ARAB", "LEVL", "ChangeFactor") = 0.90; display "scenario setting:", DATA;

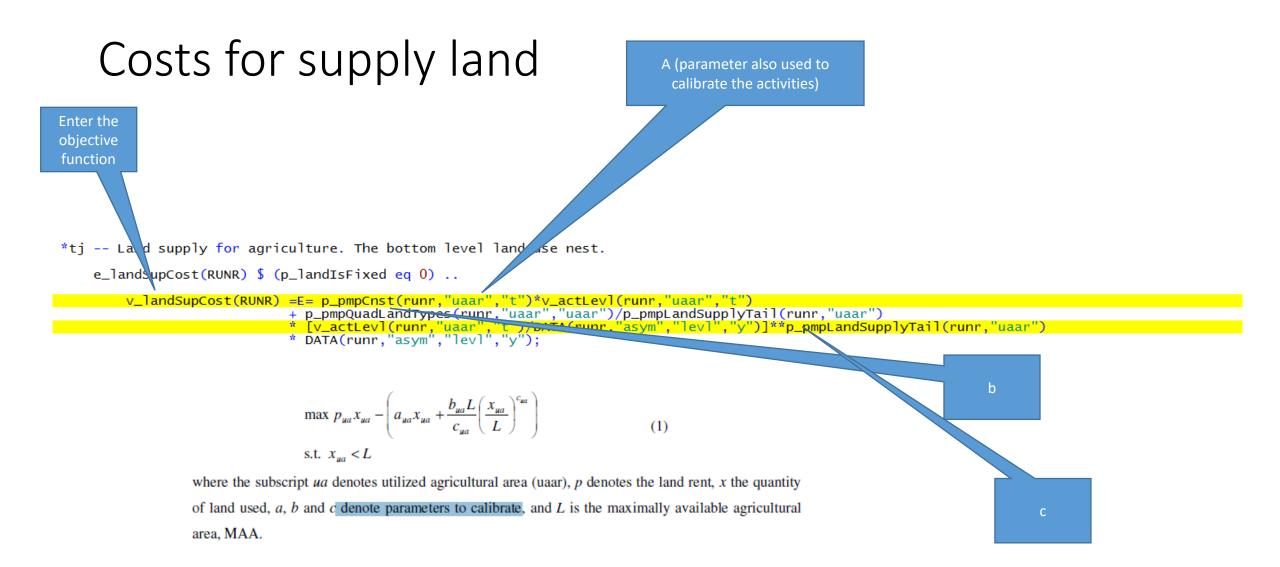

Selection of baseline scenario (nochange) and arable land reduction scenario (ts9)

Result exploitation			
		Scenario 1	res_2_1230userScens_nochange
	DK "Denmark"	Scenario 2	res_2_1230userScens_ts9
	FR "France"	Scenario 3	×
	AT "Austria" UK "United Kingdom"	Scenario 4	×
Country selection	LV Latvia	Scenario 5	×
	RO "Romania" MK "Macedonia"	Scenario 6	×
	BA "Bosnia and Herzegovina"	Scenario 7	×
Regio	onal level 029	Scenario 8	×
Base year	r selection 04 08 10 12	Scenario 9	×
	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	Scenario 10	~
	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Scenario 11	·
Simulation year se	election 32 33 34 35 36 37 38 39	Scenario 12	×
	40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Scenario 13	v
	56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	Scenario 14	· ·
		Scenario 15	×
			Select scenarios

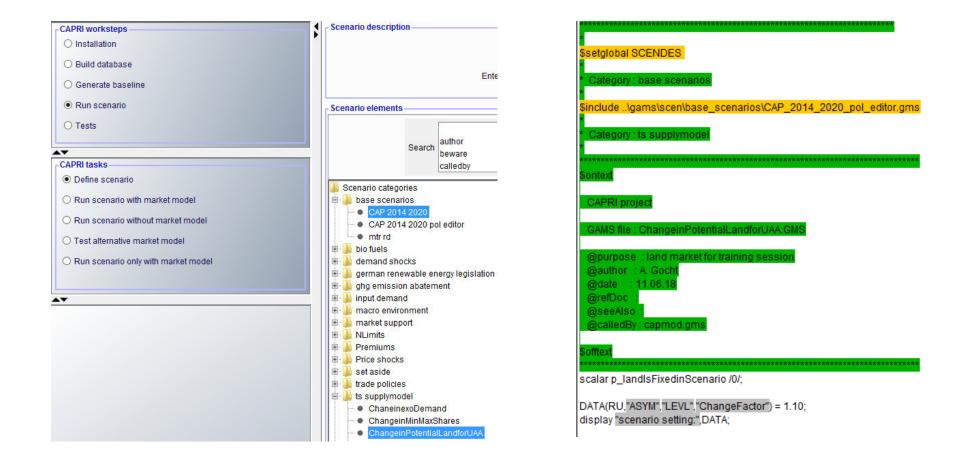
Results: Reduction of available arable land by 10%


🛃 Supply details [0]						
Region		Year				
Denmark		~	2030			
5	nochange		ts9			
¥ ¥	Income [Euro/ha or head]	Supply [1000 t, 1000 ha or Mio Const FIN	Income [Euro/ha or head]	Supply [1000 t, 1	000 ha or Mio Const EU]	
Cereals	257.58	1644.16	269.93 4.80%		1426.48 -13.24%	
Oilseeds	474.62	246.22	483.04 1.78%		203.48 -17.36%	
Other arable crops	-76.58	394.41	- 103.69 -35.40%		410.10 3.98%	
Vegetables and Permanent crops	41484.92	1190.00	41677.12 0.46%		1188.44 -0.13%	
Fodder activities	203.79	872.09	117.83 -42.18%		911.06 4.47%	

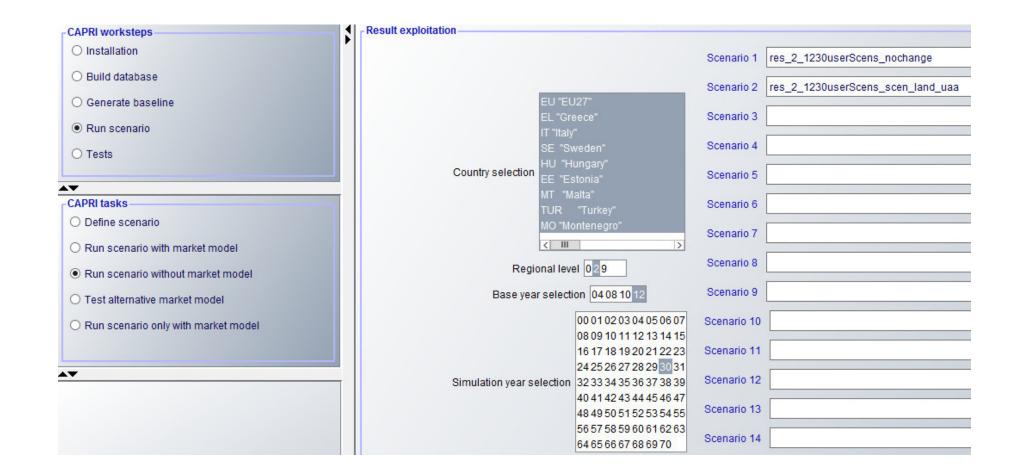
Market clearing


- Land supply, see also in doc
- potentially be used by agriculture is allocated between agriculture and other land uses
- At the second level the regional representative farm decides how to allocate total land supplied to: arable and grass land {arab, gras}.
- Heterogeneity of land is reflected in a concave cost curve for increasing the allocation to the two land types.
- The representative farm optimizes the land allocation by maximizing the total land rent across land types minus the cost of allocating it to each land type.

Constraints to potentially used land for agri.


Costs for changes in the land allocation

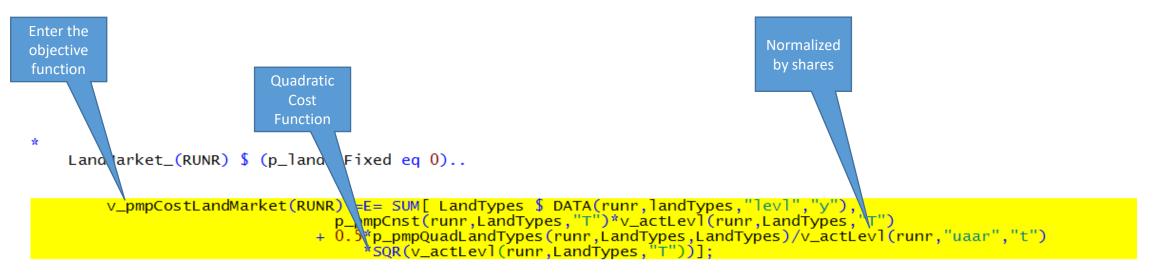
- Nest is calibrated for the observed trend
- Two costs the farmer (land owner) has:
 - Supply UAA
 - Transform land GRAS and ARAB



Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Land Balance	E_landSupCost See also OBJEQF_	v_actLevl(landtypesBal) v_landSupCost	p_landisfixed=1 DATA (RU, "Asym", "Levl","Y") p_pmpQuadLandTypes(U AAR) p_pmpLandSupplyTail	Exercise: ChangeofpotentialLa ndforUAA

Scenario: Change in available land for UAA (+10%)

Selection of baseline scenario (nochange) and increase of available land for UAA (scen_land_uaa)



Results: Change in available land for UAA (+10%)

🛃 Supply details [0]						
Region	Year					
Denmark	10		20	✓ 2030		
S	nochange		scen_land_uaa			
X X	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]		
Cereals	257.58	1393.46	236.01 -8.37%			
Oilseeds	474.62	154.56	<mark>455.11</mark> -4.11%			
Other arable crops	-76.58	89.70	- <mark>69.1</mark> 5 9.70%			
Vegetables and Permanent crops	41484.92	22.97	41353.67 -0.32%			
Fodder activities	203.79	853.15	197.60 -3.03%			
Set aside and fallow land	332.83	126.87	311.06 -6.54%			
All cattle activities	2270.96	994.91	2240.03 -1.36%			
Beef meat activities	696.97	117.92	687.38 -1.38%			
All Dairy	2482.60	876.99	2448.94 -1.36%			
Other animals	407.62	3136.75	401.22 -1.57%			

🖆 Supply details [0]					
	Region				
	Denmark				
5	nochange		scen_land_uaa		
¥_ ¥	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	
Cereals	257.58	1393.46	236.01 -8.37%	1522.13 9.23%	
Soft wheat	272.07	565.76	<mark>250.93</mark> -7.77%		
Rye and Meslin	302.34	116.00	282.44 -6.58%		
Barley	223.47	623.51	202.33 -9.46%		
Oats	229.86	54.64	210.32 -8.50%		
Grain Maize	609.41	15.52	588.35 -3.46%		
Other cereals	475.64	18.02	454.55 -4.43%	19.26 6.83%	

Cost for transforming land types

Cost for Transforming land types (Arab-Gras)

Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Land Balance	LandMarket_ see also OBJEQF_	V_actLevel(landtypes) V_actLevel("UAA")	<pre>p_landisfixed=1 DATA (RU, "Asym", "Levl","Y") p_pmpCnst(LandTypes) p_pmpQuadLandTypes(landtypes)</pre>	Option: Change costs for transforming Land Types

1. Objective function in the supply model of CAPRI

Objective function

- Linear function (LINEAR_)
 - sales/purchases valued by "unit value" price EAA
 - variable costs
 - Premiums
 - Minus Endogenous cut of premiums in case of overshot of entitlements (comes later)
- Total Objective function

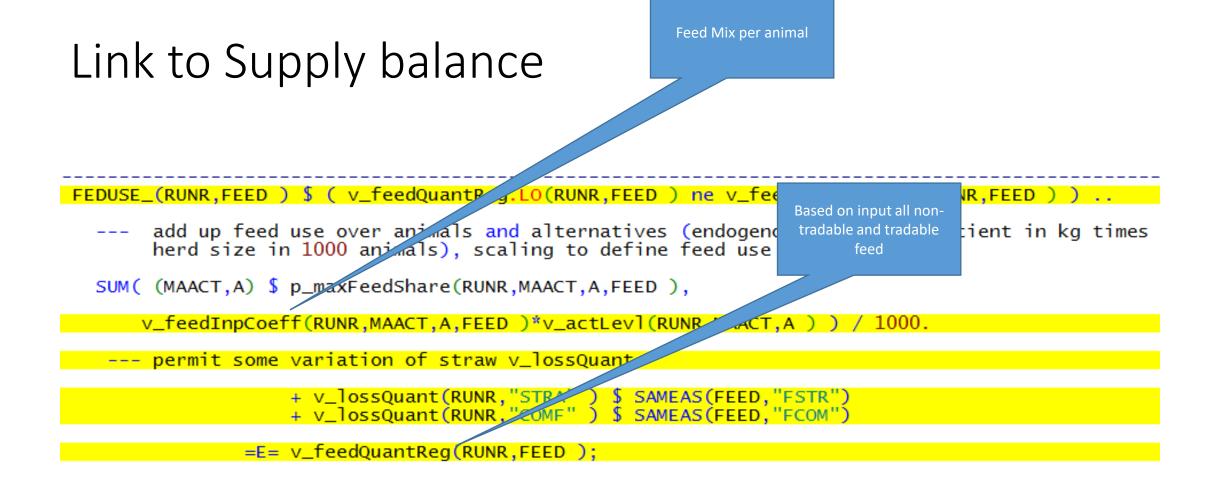
OBJEQF_ = summing linear and quadratic costs

• Target Variable

v_obje in OBJEQF_ (solver print out)

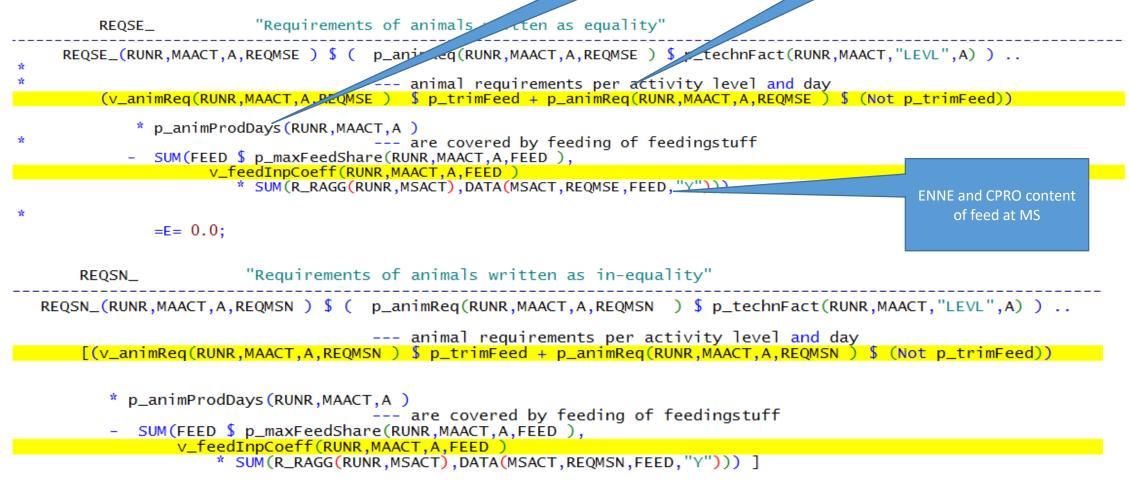
sales/purchases valued by "unit value" price from gross Economic Accounts for Agriculture		
SUM(RUNR_OMOBJE(RUNR,OM_OBJE), v_netPutQuant(RUNR,OM_OBJE) * (SUM(R_RAGG(RUNR,MSACT), (DATA(MSACT,"UVAG",OM_OBJE,"Y") \$ (not p	n_useUvaqScen) + (p_uvaqScen_MSACT.OM_OBJE) \$ p_useUv	vagScen)
v_netPutQuant(RUŃR,OM_OBĴÉ) * (SUM(R_RAGG(RUNR,MSACT), (DATA(MSACT,"UVAG",OM_OBJE,"Y") \$ (not p + (p_fnutuvag(RUNR,OM_OBJE) \$ (p_u	useInputPScen \$ sum(FNUT\$sameas(OM_OBJE,FNUT),1)))))
+ SUM(OMS \$ (p_exoDemand(RUNR,"UVAG",OMS) \$ (p_PMPStep1 eq 1)), v_netPutQuant(RUNR,OMS) * p_exoDemand(RUNR,"UVAG",OMS))		
<pre>+ SUM(OMS \$ p_exoDemand(RUNR,"DEMD",OMS),</pre>	Scen	BARL OATS MAIZ
in order to define the marginal value of the fodd supply balance, introduce selling/buying activity in calibration step	Solv Only during calibration,	Ver RAPE SUNF
+ SUM(RUNR_OMS_IN_SUPBAL(RUNR,OMS) \$ (FODDO(OMS) and (NOT SAMEAS(OMS,"STRA"))), v_netPutQuant(RUNR,OMS) * DATA(RUNR,"UVAG",OMS,"Y")) \$ (p_PMPStep1 eq 1)	calibrates to given prices	SOYA PARI
		OLIV
+ SUM(A \$ (p_technFact(RUNR, "SUGB", "LEVL", A) \$ p_technFact(RUNR, "SUGB", "VCOF", A)), v_suge?ev(RUNR, A))	8 line(s) not	
activity levels multiplied with variable costs (excluding feed and animals), negative values		TEXT
premimums for specific alternatives premimums defined in policy data set	Only during calibration,	TOBA TOMA
		OVEG APPL
<pre>SUM((MPACT,A) \$ p_technFact(RUNR,MPACT,"LEVL",A), v_actLevl(RUNR,MPACT,A) * (p_linObjeCont(RUNR,MPACT,A) + (p_inputPScen(RUNR,MPACT,A) \$ p_use</pre>	calibration to given prices	
+DATA(RUNR,MPACT,"PRME","Y")*(1+p_technFact(RUNR,MPACT,"PRME",A))))		TAGR
endogenous cut of premiums in case of overshot		TABO TWIN
		FCER FPRO
<pre>SUM((PSDPAY_cutEndog,DDTarget) \$ p_entlLimit(RUNR,PSDPAY_cutEndog,rget,"Limit"),</pre>	Variable costs see	FENE
	define obje.gms	FOTH NITF "Nitrogen in
total objective (Income of agriculture + PQP-terms + PQP-feed-terms + mitig Premium per		PHOF "Phospate i POTE "Potassium
JEQF v_obje =E= SUM(RUNR, activities		YCOW "Young cow
revenues - variable costs		YBUL "Young bull YHEI "Young heif
v_linObjePart(RUNR) - v_sumOfPmpTermsLevls(RUNR)*v_labCap.scale(runr) \$ (v_labCap.lo(RUNR) ne v_	labCap.up(RUNR))	YCAM "Young mail YCAF "Young fem
contribution of PMP terms for feeding		YPIG "Young pigl YLAM "Young lam
+ v sumOfPmpTermsFeed(RUNR)*v labCap.scale(runr) \$ ((p PMPStep1 ne 1) \$ (v labCap.lo(RUNR) ne v la		YCHI "Young chi
	abCap.up(KUNK))	COMI BEEF
cost of GHG mitigation options		PORK
land market		ISGMT

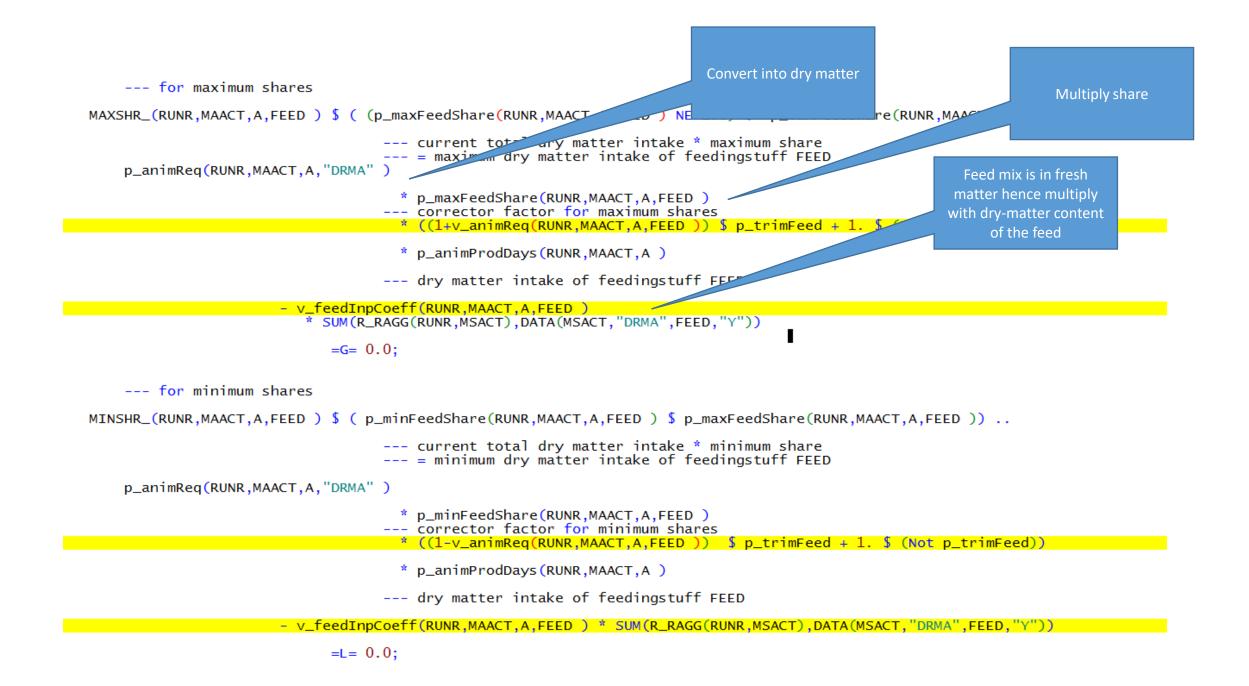
Objective function

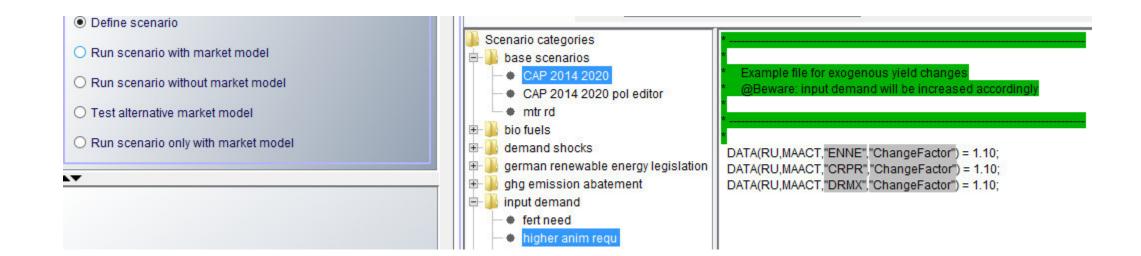

Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Objective Function	LINEAR_,	v_linObjePart v_overshotEntl v_actLevl v_netPutQuant	Premium: DATA(RUNR,MPACT,"PRME","Y") Premium loss when overshot: p_entlLimit(RUNR,PSDPAY_cutEndog, DDTarget,"Cut") Price: DATA(MSACT,"UVAG",OM_OBJE,"Y") Switch for scenario solver: p_useUvagScen:	
	OBJEQF_	v_linObjePart v_sumOfPmpTermsLevls v_labCap v_sumOfPmpTermsFeed v_pmpCostLandMarket v_landSupCost		

include 'supply\supply_model.gms';

\$


Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Feeding block	FEDUSE_ Balance for feedingstuff regional add up feed use over animals and alternatives (endogenous input coefficient in kg times herd size in 1000 animals), scaling to define feed use in 1000 t	<pre>v_feedInpCoeff v_actLevI(MAACT) v_lossQuant v_feedQuantReg</pre>	p_maxFeedShare	See exercise
	MI(A)NSHR_ Mi(a)nimum feed shares	v_feedInpCoeff	p_animReq(RUNR,MA ACT,A,"DRMA") p_maxFeedShare p_animProdDays DATA(MSACT,"DRMA", FEED,"Y")	See exercise
	REQSE(N)_ Requirements of animals written as (in)- equality	v_feedInpCoeff	p_animReq p_animProdDays	See exercise


2. Definition and calculation of different scenarios


As requirement are per day multiply with no of production cycle of animals

Requirements of animal

Scenario: Higher animal feed requirements +10% (for net energy lactation ("ENNE"), crude protein ("CRPR"), dry matter max ("DRMX")

Selection of baseline scenario (nochange) and increase of animal feed requirements (scen_an_feed_req)

CAPRI worksteps	Result exploitation	
O Installation		Scenario 1 res_2_1230userScens_nochange
O Build database		
⊖ Generate baseline	EU "EU27"	Scenario 2 res_2_1230userScens_scen_an_feed_req
O Generate baseline	EU EU27 EL "Greece"	Scenario 3
Run scenario	IT "Italy"	
O Tests	SE "Sweden"	Scenario 4
	Country selection	Scenario 5
▲▼ CAPRI tasks	EE "Estonia"	
O Define scenario	TUR "Turkey"	Scenario 6
-	MO "Montenegro"	
O Run scenario with market model	< 111	Scenario 7
Run scenario without market model	Regional level 029	Scenario 8
O Test alternative market model	Base year selection 04 08 10 12	Scenario 9
O Run scenario only with market model	00 01 02 03 04 05 06 0	07 Scenario 10
	08 09 10 11 12 13 14	
A T	16 17 18 19 20 21 22 2	
	24 25 26 27 28 29 30	
	Simulation year selection 32 33 34 35 36 37 38	
	40 41 42 43 44 45 46 4 48 49 50 51 52 53 54 5	Operation 42
	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	
	64 65 66 67 68 69 70	Scenario 14
		Scenario 15

Results: Higher animal feed requirements (+10%)

Feed Distribution - multiplied with herd size [0]								
Re	egion					Ye	ar	
De	enmark					✓ 20	30	
5	scen_an_feed_req							
¥. 5	Feed cereals [kg/head]	Feed rich protein [kg/head]	Feed rich energy [kg/head]	Fodder maize [kg/head]	Feed cereals [kg/head]	Feed rich protein [kg/head]	Feed rich energy [kg/head]	Fodder maize [kg/head]
All cattle activities	344.84	708.10	4.22	6775.05	575.82 66.98%			
All Dairy	339.67	703.27	3.85	6537.03	555.22 63.46%			7005.62 7.17%
Other animals	6339.53	1842.28	8.87	5706.02	6773.98 6.85%			5989.44 4.97%

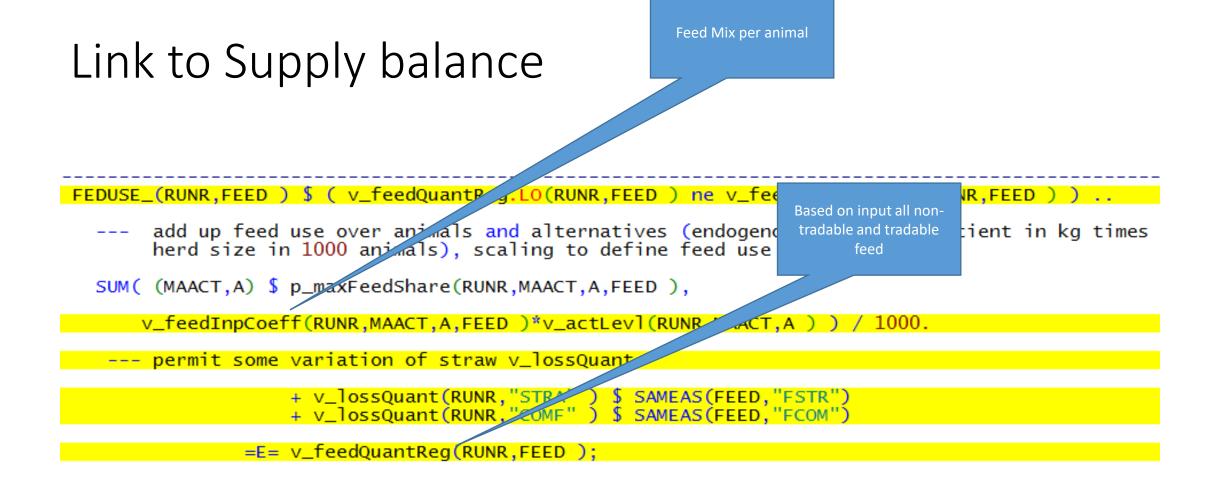
Results: Higher animal feed requirements (+10%)

🖆 Supply details [0]						
Region						
Denmark						
S	nochange		scen_an_feed_req			
¥	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]		
Beef meat activities	696.97	117.92	<mark>651.19</mark> -6.57%			
All cattle activities	2270.96	994.91	2269.05 -0.08%			
Other animals	407.62	3136.75	385.42 -5.45%			
All Dairy	2482.60	876.99	2471.64 -0.44%			
Other arable crops	-76.58	89.70	- 45.86 40.11%			
Fodder activities	203.79	853.15	264.09 29.59%			
Vegetables and Permanent crops	41484.92	22.97	41498.07 0.03%			
Oilseeds	474.62	154.56	494.29 4.15%			
Cereals	257.58	1393.46	300.61 16.71%			

Fertilizer balance

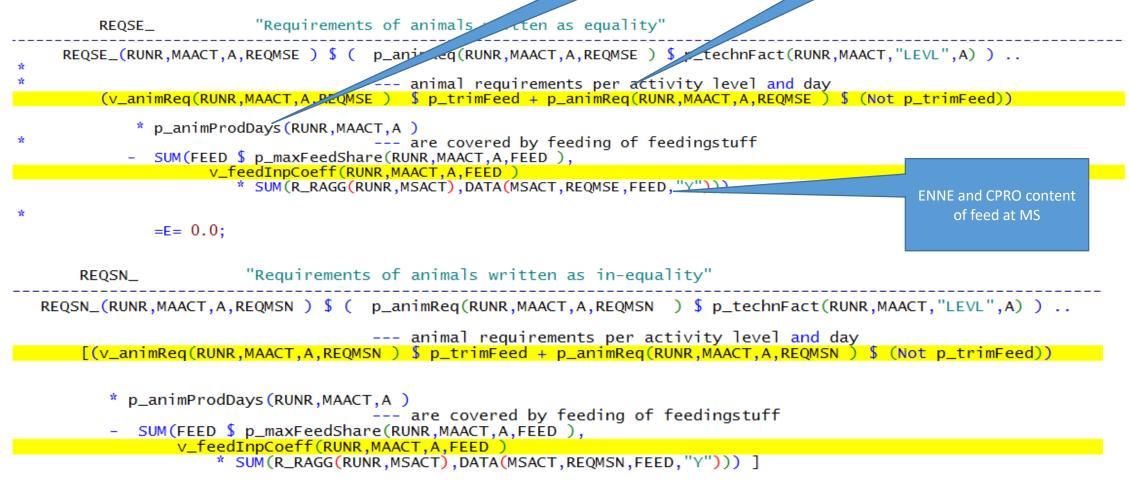
- Currently under revision for Star2
- Balance is done not at activity level but on crop group level (NGRP)
- FNUT->NITF, "Nitrogen in fertiliser", PHOF "Phospate in fertiliser [P2O5]" and POTF "Potassium in fertiliser [K2O]"
- Mineral fertilizer is delivered from Supply balance
 Balance
- Total need of plant (adjusted by some correction factor (v_cropNutNeedMultFact, v_cropNutNeedAddFact, p_nitrFact))

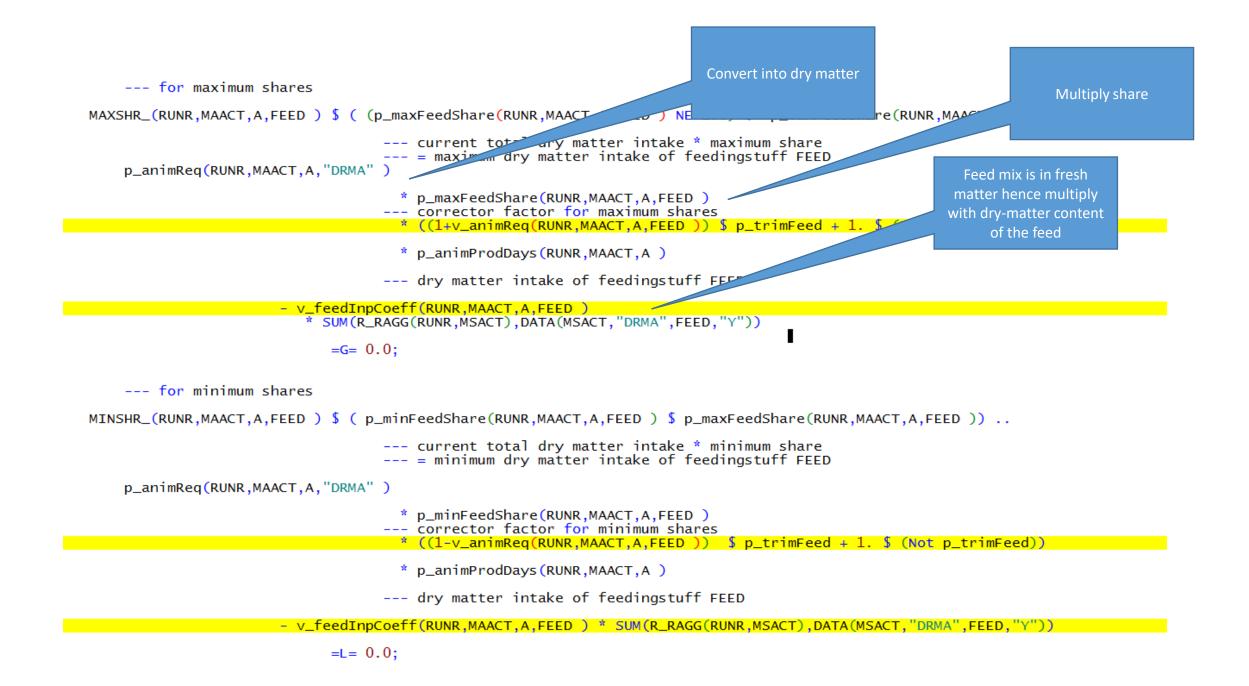
SUM((CACT_TO_NGRP(MCACT,NGRP),A) \$ p_technFact(RUNR,MCACT,"LEVL",A), v_actLev1(RUNR,MCACT,A)		
total nutrient need of crops (retention - biolog. fixation for certain crops) * nutrient factor		
<pre>* (DATA(RUNR,MCACT,FNUT,"Y") * (1-p_nitrFact(RUNR,MCACT,"BioFix") \$ SAMEAS(FNUT,"NITF")</pre>		
* ^(RUNR,FNUT,A)		
plus constant term of nutrient factor		
+ v_cropNutNeedAddFact(RUNR,FNUT))	Total need of	purchases of
soil property effect	plant (see data	mineral fertiliz
<pre>* (p_nitrFact(RUNR,"ALL","DEFR") \$ SAMEAS(FNUT,"NITF") + 1 \$ (NOT SAMEAS(FNUT,"NITF")))</pre>	· ·	
increasing fertilizing needs as a function of the yield	cube)	
<pre>* SQRT([1.+p_technFact(RUNR,MCACT,"Yield",A) + 0.2 \$ SAMEAS(MCACT,"GRAI") - 0.2 \$ SAMEAS(MCACT,"GRAE")] \$ DATA(RUNR,MCACT,FNUT,"Y"))</pre>		
factor describing the changes in removal of nutrients resulting from yield difference stored in TECHF	adjusted by some correction factor v cropNutNeedMultFact	deliveries from crop residues and harvest residues
<pre>*(p_technFact(RUNR,MCACT,FNUT,A)+1.)</pre>		
) * 0.001 =E= purchases of anorganic fertiliser minus Ammonia v_lossQuant during application + v_fertDist(RUNR,NGRP,FNUT,"Mine") * (1p_emiLoss(RUNR,"NETF","N","GasRunTot") \$ SAMEAS(FNUT,"NITF"))	adjusted by some correction factor v_cropNutNeedAddFact	deliveries from man
$+$ v_reconstraint, where $-$ (1 $p_{-chrcoss}$ (conk, here, h, daskanot) $+$ SAMEAS(FROT, here $-$)		
extra-losses exceeding base year		Ammonia v_lossQuant during
- v_fertDist(RUNR,NGRP,FNUT,"Loss")	Another factor: p_nitrFact	application
deliveries from manure corrected for further v_lossQuant (NOx, leaching) (attention: a part of these v_lossQuant also hides in v_cropNutNeedMultFact)		
+ v_fertDist(RUNR,NGRP,FNUT,"Excr") * SUM(FOUT_T_N(FOUT,FNUT),v_nutAvailFactExcr(RUNR,FOUT,"T"))	increasing fertilizing needs as a	
deliveries from crop residues (distribution across arable crops)	function of the yield	extra-losses exceeding base
<pre>+ (v_fertDist(RUNR,NGRP,FNUT,"Cres")</pre>		
delivery from harvest residues and atmospheric deposition (only for grass land, where it remains)		
<pre>+ SUM((CACT_TO_NGRP(MCACT,NGRP),FOUT_T_N(FOUT,FNUT),A) \$ (p_technFact(RUNR,MCACT,"LEVL",A) and PERM_NGRP(NGRP)), v_actLev1(RUNR,MCACT,A)</pre>		
<pre>* DATA(RUNR,MCACT,FOUT, "Y") * (p_technFact(RUNR,MCACT,FOUT,A)+1.)</pre>		

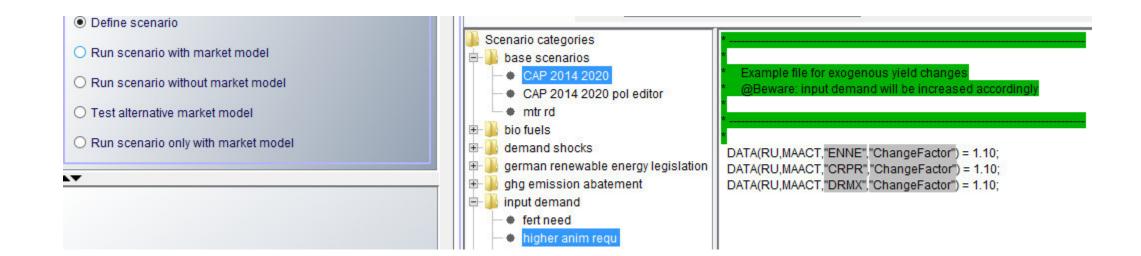

Area	Equations	Variables	Parameters or scalars	Exercise
Distribution of mineral and organic fertilizer to crops	fertDistMine_ ineral fertilizer distributed to group of crops must exhaust total mineral N sales	v_fertDist(RUNR,NGRP, FNUT,"Mine") v_netPutQuant(RUNR, FNUT)	No	
	NUTNED_ nutrient need balance for group of crops		Nutrient factors: p_nitrFact v_cropNutNeedAddFact v_cropNutNeedMultFact Nutrient need of crop: DATA(RUNR,MCACT,FNUT,"Y")	Exercise
	NUTMIN_ Minimum use of mineral fertilizer	v_actLevl(MCACT) v_fertDist(RUNR,NGRP, FNUT,"Mine")	p_minShareMinFert(MSACT,MCACT,A, FNUT) v_minShareMinFertCorr DATA(RUNR,MCACT,FNUT,"Y") p_nitrFact	Exercise

include 'supply\supply_model.gms';

\$


Area	Equations	Variables	Parameters or scalars	Exercise from the policy editor
Feeding block	FEDUSE_ Balance for feedingstuff regional add up feed use over animals and alternatives (endogenous input coefficient in kg times herd size in 1000 animals), scaling to define feed use in 1000 t	<pre>v_feedInpCoeff v_actLevI(MAACT) v_lossQuant v_feedQuantReg</pre>	p_maxFeedShare	See exercise
	MI(A)NSHR_ Mi(a)nimum feed shares	v_feedInpCoeff	p_animReq(RUNR,MA ACT,A,"DRMA") p_maxFeedShare p_animProdDays DATA(MSACT,"DRMA", FEED,"Y")	See exercise
	REQSE(N)_ Requirements of animals written as (in)- equality	v_feedInpCoeff	p_animReq p_animProdDays	See exercise


2. Definition and calculation of different scenarios


As requirement are per day multiply with no of production cycle of animals

Requirements of animal

Scenario: Higher animal feed requirements +10% (for net energy lactation ("ENNE"), crude protein ("CRPR"), dry matter max ("DRMX")

Selection of baseline scenario (nochange) and increase of animal feed requirements (scen_an_feed_req)

CAPRI worksteps	Result exploitation	
O Installation		Scenario 1 res_2_1230userScens_nochange
O Build database		
⊖ Generate baseline	EU "EU27"	Scenario 2 res_2_1230userScens_scen_an_feed_req
O Generate baseline	EU EU27 EL "Greece"	Scenario 3
Run scenario	IT "Italy"	
O Tests	SE "Sweden"	Scenario 4
	Country selection	Scenario 5
▲▼ CAPRI tasks	EE "Estonia"	
O Define scenario	TUR "Turkey"	Scenario 6
-	MO "Montenegro"	
O Run scenario with market model	< 111	Scenario 7
Run scenario without market model	Regional level 029	Scenario 8
O Test alternative market model	Base year selection 04 08 10 12	Scenario 9
O Run scenario only with market model	00 01 02 03 04 05 06 0	07 Scenario 10
	08 09 10 11 12 13 14	
▲▼	16 17 18 19 20 21 22 2	
	24 25 26 27 28 29 30	
	Simulation year selection 32 33 34 35 36 37 38	
	40 41 42 43 44 45 46 4 48 49 50 51 52 53 54 5	Operation 42
	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	
	64 65 66 67 68 69 70	Scenario 14
		Scenario 15

Results: Higher animal feed requirements (+10%)

Feed Distribution - multiplied with herd size [0]								
Re	egion					Ye	ar	
De	enmark					✓ 20	30	
5	scen_an_feed_req							
¥. 5	Feed cereals [kg/head]	Feed rich protein [kg/head]	Feed rich energy [kg/head]	Fodder maize [kg/head]	Feed cereals [kg/head]	Feed rich protein [kg/head]	Feed rich energy [kg/head]	Fodder maize [kg/head]
All cattle activities	344.84	708.10	4.22	6775.05	575.82 66.98%			
All Dairy	339.67	703.27	3.85	6537.03	555.22 63.46%			7005.62 7.17%
Other animals	6339.53	1842.28	8.87	5706.02	6773.98 6.85%			5989.44 4.97%

Results: Higher animal feed requirements (+10%)

🖆 Supply details [0]						
Region						
Denmark						
S	nochange		scen_an_feed_req			
¥	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]	Income [Euro/ha or head]	Hectares or herd size [1000 ha or hds]		
Beef meat activities	696.97	117.92	<mark>651.19</mark> -6.57%			
All cattle activities	2270.96	994.91	2269.05 -0.08%			
Other animals	407.62	3136.75	385.42 -5.45%			
All Dairy	2482.60	876.99	2471.64 -0.44%			
Other arable crops	-76.58	89.70	- 45.86 40.11%			
Fodder activities	203.79	853.15	264.09 29.59%			
Vegetables and Permanent crops	41484.92	22.97	41498.07 0.03%			
Oilseeds	474.62	154.56	494.29 4.15%			
Cereals	257.58	1393.46	300.61 16.71%			

Fertilizer balance

- Currently under revision for Star2
- Balance is done not at activity level but on crop group level (NGRP)
- FNUT->NITF, "Nitrogen in fertiliser", PHOF "Phospate in fertiliser [P2O5]" and POTF "Potassium in fertiliser [K2O]"
- Mineral fertilizer is delivered from Supply balance
 Balance
- Total need of plant (adjusted by some correction factor (v_cropNutNeedMultFact, v_cropNutNeedAddFact, p_nitrFact))

SUM((CACT_TO_NGRP(MCACT,NGRP),A) \$ p_technFact(RUNR,MCACT,"LEVL",A), v_actLev1(RUNR,MCACT,A)		
total nutrient need of crops (retention - biolog. fixation for certain crops) * nutrient factor		
<pre>* (DATA(RUNR,MCACT,FNUT,"Y") * (1-p_nitrFact(RUNR,MCACT,"BioFix") \$ SAMEAS(FNUT,"NITF")</pre>		
* ^(RUNR,FNUT,A)		
plus constant term of nutrient factor		
+ v_cropNutNeedAddFact(RUNR,FNUT))	Total need of	purchases of
soil property effect	plant (see data	mineral fertiliz
<pre>* (p_nitrFact(RUNR,"ALL","DEFR") \$ SAMEAS(FNUT,"NITF") + 1 \$ (NOT SAMEAS(FNUT,"NITF")))</pre>	· ·	
increasing fertilizing needs as a function of the yield	cube)	
<pre>* SQRT([1.+p_technFact(RUNR,MCACT,"Yield",A) + 0.2 \$ SAMEAS(MCACT,"GRAI") - 0.2 \$ SAMEAS(MCACT,"GRAE")] \$ DATA(RUNR,MCACT,FNUT,"Y"))</pre>		
factor describing the changes in removal of nutrients resulting from yield difference stored in TECHF	adjusted by some correction factor v cropNutNeedMultFact	deliveries from crop residues and harvest residues
<pre>*(p_technFact(RUNR,MCACT,FNUT,A)+1.)</pre>		
) * 0.001 =E= purchases of anorganic fertiliser minus Ammonia v_lossQuant during application + v_fertDist(RUNR,NGRP,FNUT,"Mine") * (1p_emiLoss(RUNR,"NETF","N","GasRunTot") \$ SAMEAS(FNUT,"NITF"))	adjusted by some correction factor v_cropNutNeedAddFact	deliveries from man
$+$ v_reconstraint, where $-$ (1 $p_{-chrcoss}$ (conk, here, h, daskanot) $+$ SAMEAS(FROT, here $-$)		
extra-losses exceeding base year		Ammonia v_lossQuant during
- v_fertDist(RUNR,NGRP,FNUT,"Loss")	Another factor: p_nitrFact	application
deliveries from manure corrected for further v_lossQuant (NOx, leaching) (attention: a part of these v_lossQuant also hides in v_cropNutNeedMultFact)		
+ v_fertDist(RUNR,NGRP,FNUT,"Excr") * SUM(FOUT_T_N(FOUT,FNUT),v_nutAvailFactExcr(RUNR,FOUT,"T"))	increasing fertilizing needs as a	
deliveries from crop residues (distribution across arable crops)	function of the yield	extra-losses exceeding base
<pre>+ (v_fertDist(RUNR,NGRP,FNUT,"Cres")</pre>		
delivery from harvest residues and atmospheric deposition (only for grass land, where it remains)		
<pre>+ SUM((CACT_TO_NGRP(MCACT,NGRP),FOUT_T_N(FOUT,FNUT),A) \$ (p_technFact(RUNR,MCACT,"LEVL",A) and PERM_NGRP(NGRP)), v_actLev1(RUNR,MCACT,A)</pre>		
<pre>* DATA(RUNR,MCACT,FOUT, "Y") * (p_technFact(RUNR,MCACT,FOUT,A)+1.)</pre>		

Area	Equations	Variables	Parameters or scalars	Exercise
Distribution of mineral and organic fertilizer to crops	fertDistMine_ ineral fertilizer distributed to group of crops must exhaust total mineral N sales	v_fertDist(RUNR,NGRP, FNUT,"Mine") v_netPutQuant(RUNR, FNUT)	No	
	NUTNED_ nutrient need balance for group of crops		Nutrient factors: p_nitrFact v_cropNutNeedAddFact v_cropNutNeedMultFact Nutrient need of crop: DATA(RUNR,MCACT,FNUT,"Y")	Exercise
	NUTMIN_ Minimum use of mineral fertilizer	v_actLevl(MCACT) v_fertDist(RUNR,NGRP, FNUT,"Mine")	p_minShareMinFert(MSACT,MCACT,A, FNUT) v_minShareMinFertCorr DATA(RUNR,MCACT,FNUT,"Y") p_nitrFact	Exercise

Area	Equations	Variables	Parameters or scalars	Exercise
mapping	fertDistExcr_ Total crop available nutrients from manure must be distributed to different crop groups	excrements distributed summed up over crop groups		
mapping	fertDistCres_ Total nutrients from crop resiudes and atmosperic deposition must be distributed to different crop groups	Only non permanent v_actLevl(nonPermAct)	DATA(RUNR,noPermCact,FOUT,"Y")	Option
mapping	ManureNPK_ Definition of total manure output of animals	v_ManureNPK v_actLevl(RUNR,MAACT	v_ManureNPKintraTrade DATA(RUNR,MAACT,FOUT,"Y") p_emiLoss	Manure from animals

Scenario: Reduction of manure output from animals by 5%

<	* author * date * purpose	: Alexander : 15-06-2018 12:01:33
	* date	
	* date	
		. 13-00-2010 12:01:33
		: Scenario definition
	e ²	. Sound to dominion
	*********	***************************************
	Setglobal SC	ENDES sdijgoiw
	Category : b	ase scenarios

	t outhor	: Alexander
		: 15-06-2018 11:44:22
		: Scenario definition
	•	
	********	***************************************
		21.
	* User supplie	d description :
=		***********
	asergiobal Sci	ENDES Sulgow
	Category : b	ase scenarios
	\$include\gan	ms\scen\base_scenarios\CAP_2014_2020_pol_ed
1	DATA(RU,MA)	ACT,FOUT,"ChangeFactor") = 0.95;
		Category : t author date purpose User supplie sdijgoiw Ssetglobal SC Category : t Sinclude\gar

.gms

Results: Reduction of manure output from animals by 5%

🍰 Manure output	per animal [0]				
	Region	Year	Scen		
1	Denmark Nitrogen [kg N / head or 1000 heads]	V 2030 Phospate [kg P2O5 / head or 1000 heads]	Potassium [kg K2O / head or 1000 heads]	-	Potassium [kg K2O / head or 1000 heads]
♦ All cattle activitie	s 110	66	143		
All Dairy	114	69	145	109 -5%	
Other animals	57	23	23	54 -5%	

Results: Reduction of manure output from animals by 5%

🛃 Environmental indicators [0]					🛃 Economic Accounts for Agriculture [0]				
Region Denmark			Year 2030		Region Denmark			Year	
n n n n n n n n n n n n n n n n n n n	Nochange ts_4_man1					2030			
T T	Total [in 1000t]	Amount per ha [in 1000t/ha]	Total [in 1000t]	Amount per ha [in 1000t/ha]	_	nochange		ts_4_man1	
				-		Gross EAA value		Gross EAA value	Quantity
GHG emissions from agricultural input industries in CO2 equivalents	540.58	204.71	5.90%	216.78 5.90%		[Mio Euro]	[1000 t]	[Mio Euro]	[1000 t]
Ammonium output	63.75		60.83 -4.58%		Manure phospate	548.39	209.71	529.00 -3.54%	
CH4 Total emissions	235.54	89.20	234.84 -0.30%		Manure output	1622.07	1151.78		
N2O Total emissions	18.24	6.91	17.79 -2.43%					-3.11%	
CO2 Total emissions	-5441.74	-2060.71		-2047.39	Manure nitrate	648.98	506.81	629.15 -3.05%	
GHG emissions from agricultural input industries in CO2 equivalents	540.58	204.71	572.50 5.90%		Manure potassium	424.70	435.25	413.53 -2.63%	

MP term		cies	quadratic term	
UADRA_ "Quadratic and _(RUNR) v_sumOfPmpTermsLev1	linear PMP terms activities" ;(RUNR) =E= (By group of activities	/1 ine(s) 2020 line(s)
Linear part (specified in tems of mPa sum((mpact,A) \$ (p_technFa v_actLevl(RUNR,mpact,A	act to cover the case of water act(RUNR,mpact,"LFVL",A) \$	MPStepl ne 1)),	defined in GRPLEVL	
	evistic part multi red by 0.5	for easy vatives		
<pre>multiplied by the diagona sum((qact,A,A1) \$ (p_1) y act evil(PUNP, cact</pre>	effects (direct own area cos cechnEact(RUNR,qact,"LEVL" ,A)"v_actLevl(RUNR,qact	p_technFact(RUNR,qact	.,"LEVL",A1)),	
V_ACLEVI(RUNK, YAC	chn(RUNR, qact, A, A1)			
* (p pmpOuadTed	ro_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,gzzt)/p_technFac	(RUNR,GRP,GRP))/p_techn t(RUNR,qact,"LEVL",A))	Fact(RUNR,qact,"LEVL",A)) \$ (SAMEA: \$ (SAMEAS	S(A,A1) \$ (p_useCropSpecificQMatrix ec (A,A1) \$ (p_useCropSpecificQMatrix eq
* (p_pmpQuadTec + (SUM(EPRD_ + (p_pmpQuadPa plus the crop group effect	TO_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,gact)/p_technFac		iFact(RUNR,qact,"LEVL",A)) \$ (SAMEA: \$ (SAMEAS	S(A,A1) \$ (p_useCropSpecificQMatrix ec (A,A1) \$ (p_useCropSpecificQMatrix eq
<pre>* (p_pmpQuadTec + (SUM(EPRD + (p_pmpQuadPa plus the crop group effect + sum((GRP,GRP1) \$ (p_us v_actLev1(RUNR (p_pmpQuadb</pre>	TO_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,gact)/p_technFac	"T")* p(GRP) le p_ordGrp(GRP1	.))	S(A,A1) \$ (p_useCropSpecificQMatrix eq (A,A1) \$ (p_useCropSpecificQMatrix eq
<pre>* (p_pmpQuadTe(+ (SUM(EPRD_T)) + (p_pmpQuadPa) plus the crop group effect + sum((GRP,GRP1) \$ (p_us) v_actLev1(RUNR (p_pmpQuadf) + p_pmpQuadf + p_pmpQuadf</pre>	TO_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,g_c)/p_technFac ss ecropSpecificQMatrix eq 0), GRP,"T")*v_actLev1(RUNR,GRP1, Pact(RUNR,GRP,GRP1) \$ (p_ordGr act(RUNR,GRP1,GRP) \$ (p_ordGr che diagonal element RP) \$ (p_useCropSpecificQMatri act(RUNR,qact,"LEVL",A), v_ac	"T")* p(GRP) le p_ordGrp(GRP1 p(GRP) gt p_ordGrp(GRP1 x eq 0), tLev1(RUNR,qact,A)))	.))	S(A,A1) \$ (p_useCropSpecificQMatrix eq (A,A1) \$ (p_useCropSpecificQMatrix eq
<pre>* (p_pmpQuadTec + (SUM(EPRD + (p_pmpQuadPa plus the crop group effect + sum((GRP,GRP1) \$ (p_us v_actLev1(RUNR (p_pmpQuadf + p_pmpQuadf wipes out the mapping of 1 - SUM(EPRD_TO_GRP(qact,GF SQR(SUM(A \$ p_technf plus the full Q effect</pre>	TO_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,g_c)/p_technFac secropSpecificQMatrix eq 0), GRP,"T")*v_actLev1(RUNR,GRP1, act(RUNR,GRP,GRP1) \$ (p_ordGr Pact(RUNR,GRP1,GRP) \$ (p_ordGr che diagonal element RP) \$ (p_useCropSpecificQMatri act(RUNR,qact,"LEVL",A), v_ac * p_pmpQuadPact(RUNR,GRP,GRP)	"T")* p(GRP) le p_ordGrp(GRP1 p(GRP) gt p_ordGrp(GRP1 ix eq 0), itLevl(RUNR,qact,A))))		S(A,A1) \$ (p_useCropSpecificQMatrix eq (A,A1) \$ (p_useCropSpecificQMatrix eq
<pre>* (p_pmpQuadTec + (SUM(EPRD_ + (p_pmpQuadPa plus the crop group effect + sum((GRP,GRP1) \$ (p_us v_actLev1(RUNR (p_pmpQuadPa + p_pmpQuadPa wipes out the mapping of t - SUM(EPRD_TO_GRP(qact,GR SQR(SUM(A \$ p_techni plus the full Q effect + sum((qact,qact1) \$ ()</pre>	TO_GRP(qact,GRP),p.mpQuadPact act(RUNR,qact,grc)/p_technFac secropSpecificQMatrix eq 0), GRP, "T")*v_actLev1(RUNR,GRP1, pact(RUNR,GRP,GRP1) \$ (p_ordGr pact(RUNR,GRP1,GRP) \$ (p_ordGr cact(RUNR,GRP1,GRP) \$ (p_ordGr cact(RUNR,gRP1,GRP) \$ (p_ordGr act(RUNR,gact,"LEVL",A), v_ac * p_pmpQuadPact(RUNR,GRP,GRP) (NOT SAMEAS(qact,qact1)) \$ (p_	"T")* p(GRP) le p_ordGrp(GRP1 p(GRP) gt p_ordGrp(GRP1 x eq 0), tLev1(RUNR,qact,A)))) useCropSpecificQMatrix		S(A,A1) \$ (p_useCropSpecificQMatrix eq (A,A1) \$ (p_useCropSpecificQMatrix eq
<pre>* (p_pmpQuadTec + (SUM(EPRD + (p_pmpQuadPa plus the crop group effect + sum((GRP,GRP1) \$ (p_us v_actLev1(RUNR (p_pmpQuadA + p_pmpQuadA wipes out the mapping of t - SUM(EPRD_TO_GRP(qact,G SQR(SUM(A \$ p_techni plus the full Q effect + sum((qact,qact1) \$ (SUM(A \$ p_techni * SUM(A \$ p_techni</pre>	TO_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,g_c)/p_technFac secropSpecificQMatrix eq 0), GRP,"T")*v_actLev1(RUNR,GRP1, act(RUNR,GRP,GRP1) \$ (p_ordGr Pact(RUNR,GRP1,GRP) \$ (p_ordGr che diagonal element RP) \$ (p_useCropSpecificQMatri act(RUNR,qact,"LEVL",A), v_ac * p_pmpQuadPact(RUNR,GRP,GRP)	"T")* p(GRP) le p_ordGrp(GRP1 p(GRP) gt p_ordGrp(GRP1 ix eq 0), :tLev1(RUNR,qact,A)))) useCropSpecificQMatrix _actLev1(RUNR,qact,A)) _actLev1(RUNR,qact1,A))		S(A,A1) \$ (p_useCropSpecificQMatrix ec (A,A1) \$ (p_useCropSpecificQMatrix eq
<pre>* (p_pmpQuadTec + (SUM(EPRD + (p_pmpQuadPa plus the crop group effect + sum((GRP,GRP1) \$ (p_us v_actLev1(RUNR (p_pmpQuadf + p_pmpQuadf wipes out the mapping of 1 - SUM(EPRD_TO_GRP(qact,GF SQR(SUM(A \$ p_technf plus the full Q effect + sum((qact,qact1) \$ (SUM(A \$ p_technf * SUM(A \$ p_technf * SUM(A \$ p_technf * SUM(A \$ p_technf * (p_pmpQuadf + p_pmpQuadf + p_pmpQuadf + p_pmpQuadf</pre>	TO_GRP(qact,GRP),p_mpQuadPact act(RUNR,qact,gact)/p_technFac ss seCropSpecificQMatrix eq 0), GRP,"T")*v_actLev1(RUNR,GRP1, vact(RUNR,GRP,GRP1) \$ (p_ordGr act(RUNR,GRP1,GRP) \$ (p_ordGr act(RUNR,GRP1,GRP) \$ (p_ordGr the diagonal element RP) \$ (p_useCropSpecificQMatri act(RUNR,qact,"LEVL",A), v_ac * p_pmpQuadPact(RUNR,GRP,GRP) (NOT SAMEAS(qact,qact1)) \$ (p_ fact(RUNR,qact,"LEVL",A), v_ fact(RUNR,qact,"LEVL",A), v_ fact(RUNR,qact1,"LEVL",A), v_ fact(RUNR,qact1,"LEVL",A), v_ fact(RUNR,qact1,"LEVL",A), v_ fact(RUNR,qact1,"LEVL",A), v_ fact(RUNR,qact1,"LEVL",A), v_ fact(RUNR,qact1, qact1) \$ (qact. fact(RUNR,qact1,qact) \$ (qact. fact(RUNR,qact1,qact) \$ (qact. fact(RUNR,qact1,qact) \$ (qact.) fact(RUNR,qact1,qact) \$ (qact.)	<pre>"T")* "p(GRP) le p_ordGrp(GRP1 "p(GRP) gt p_ordGrp(GRP1 "x eq 0), "tLev1(RUNR,qact,A))) ") "useCropSpecificQMatrix "actLev1(RUNR,qact,A)) "actLev1(RUNR,qact1,A)) pos le qact1.pos) pos gt qact1.pos)))</pre>	.))) -)))) eq 1)),	S(A,A1) \$ (p_useCropSpecificQMatrix eq (A,A1) \$ (p_useCropSpecificQMatrix eq 30 line(s)

v_actLev1(RUNR,GRP,"T") =E= SUM((qact,A) \$ (EPRD_TO_GRP(qact,GRP) \$ p_technFact(RUNR,qact,"LEVL",A)), v_actLev1(RUNR,qact,A));

PMP for feed

--- PMP for feed use per per region, activity and technology

QUADRF1_(RUNR,MAACT %addtimedim%) \$ p_technFact(RUNR,MAACT,"LEVL","T") ...

v_pmpCostFeedPerAnim(RUNR,MAACT,"T") =E=

SUM((FEED) \$ p_maxFeedShare(RUNR,MAACT,"T",FEED %addtimedim%), v_feedInpCoeff(RUNR,MAACT,"T",FEED %addtimedim%) * (p_pmpFeedInpCoeff(RUNR,MAACT,"T",FEED,"CNST") + 0.5 * v_feedInpCoeff(RUNR,MAACT,"T",FEED %addtimedim%)*p_pmpFeedInpCoeff(RUNR,MAACT,"T",FEED,"SLOP")));

------ 421 line(s) not displayed ------QUADRF_ "Quadratic and linear PMP terms feed" QUADRF_(RUNR) ... v_sumOfPmpTermsFeed(RUNR) =E= SUM((MAACT) \$ p_technFact(RUNR,MAACT,"LEVL","T"), v_actLev1(RUNR,MAACT,"T") * v_pmpCostFeedPerAnim(RUNR,MAACT,"T"));

PMP for feed

Area	Equations	Variables	Parameters or scalars	Exercise
Activity and feed mix calibration	QUADRA_ "Quadratic and linear PMP terms activities" QUADRF_, QUADRF1 "Quadratic and linear PMP terms feed"	v_sumOfPmpTermsFeed v_actLevl v_pmpCostFeedPerAni m	p_pmpCnst p_pmpQuadTechn p_pmpQuadPact p_pmpFeedInpCoeff (linear and constant)	Option change slope of feed costs

Questions

...

- How can we steer the mineral fertilizer consumption
- In which parameter are the variable input costs accounted
- Is land fixed or variable in CAPRI supply model
- What is the difference between non tradable fodder and tradable fodder in CAPRI
- Can we use more young animal in a region as we produced

Questions and answers

- How can we steer the mineral fertilizer consumption
 - v_netPutQuant, add constraint, change the price ("UVAG") for NPK at farm level
- In which parameter are the variable input costs accounted
 - p_linObjecont
- Is land fixed or variable in CAPRI supply model
 - depends on settings eq 1(eq 0) for p_landsFixed
- What is the difference between non tradable fodder and tradable fodder in CAPRI
 - depends on settings eq 1(eq 0) for p_landsFixed
- Can we use more young animal in a region as we produced
 - yes as they are tradable due to an endogenous market for young animals