
Refactoring of the CAPRI GUI and integration of new

functionalities

- Wolfgang Britz, November 2008 –

Motivation .. 1

Basic class layout ... 2

CAPRI tasks as business objects .. 2

Execution of tasks via a GamsStarter and GamsThread .. 2

Changes in the exploitation tools ... 3

Changes in user interface ... 3

Integration of META data information .. 5

Integration of the batch execution facility.. 6

Integration of the HTML based code documentation .. 7

Next steps ... 8

Motivation

The basic concept of the current Graphical User Interface (GUI) of CAPRI dates back to 2004

and developed out of a trial prototype. Albeit being quite successful in its application, the

maintenance and especially further expansion of the code base becomes more and more

cumbersome. One major reason is a strong intermingling of the GUI handling and the

business objects in the code.

The aim of the refactoring is to generate a technically clearer structure while integrating

newer features as the meta data facility, batch execution, HTML based documentation of the

GAMS code à la javadoc and links to SVN. In order to do so, major parts of the code base of

the GUI needed reprogramming, building on the concept developed for the batch execution

facility.

Basic class layout

CAPRI tasks as business objects

A core concept in the new layout is a business object called AgpTask. Technically defined as

an interface, such an object represents a work task in the overall CAPRI system such a run of

CAPREG to build the regional data base. The interface requires getters and setters for

properties such as baseYear, simYear or MemberStates. The setters can be accessed either by

a GUI interface or by the batch execution facility, formally by class implementing the

interface AgpTaskHandler.

Most tasks are GAMS executable tasks according to their isGams property. These tasks also

provide access to the name of the related GAMS program via getGamsProgramName. Each

of these tasks has also a method called generateIncludeFile which generates the specific

GAMS include file for that task.

The objects also know about the main GDX file they are generating via getGdxResultFiles.

Related to that, they allow setting the logical names of the data dimension in the result data

set via setDimNames and setXMLTablesDims.

Once the properties of a task had been defined, their logical consistency can be checked by

invoking the method checkSettings. Check settings returns a string with a description of the

first error encountered.

That layout eases dramatically the update process of CAPRI. Definition of new tasks or

changes to existing ones will generally not require changes in the GUI, but simply either

implementing a new object with the required methods or updating an existing one.

Execution of tasks via a GamsStarter and GamsThread

Execution of tasks with the property isGams is handled by a GamsStarter object. An instance

of GamsStarter let the task write out the necessary include file(s) to generate a specific

instance of the specific task (a simulation run for a specific scenario, simulation year, with the

market model switched on or off …). A GamsStarter also knows about the working directory

or other specific GAMS settings as the scratch directory. It may generate a pipe for the

GAMS output to the console to show it in a GUI.

An AgpTask can be executed by a GamsStarter who will create then a GamsThread. A

GamsThread extends the SwingWorker interface of Java so that it may communicate with the

normal event queue of JVM. A GamsThread can be gracefully terminated by sending a a

SIGNT signal to the GAMS process. That will let the GAMS execution stop at specific point

determined by the GAMS engine itself and start the finalisation handling of GAMS as

removal of intermediate files and directories.

Changes in the exploitation tools

The refactoring did not attack reprogramming the exploitation tools (tables, graphs and maps).

Here, a clear design proposal needs first to be developed before the actual coding may start,

aiming at a separation of the data model, user based filtering (empty lines and columns, filters

based on values in specific columns), layout and filtering loaded from the table definitions

and the actual view (table, graphics, maps), pivot, colors, fonts etc.. Several attempts to clean

up of the code already ended rather unsatisfactory.

In the very first version of the table tool without any pre-defined views, the code was rather

strictly separated from the GUI for the working steps. However, when new features were

added to the GUI such as progress bars, or hiding part of the GUI controls when the

exploitation tools were active, properties and methods of the GUI were accessed from within

the exploitation tools. As so often, missing resources for a serious refactoring and the rule of

“never change a running system” led to serious design flaws. A lot of the GUI controls were

accessed by inner classes and then defined static, and together with some problems ended as

public static objects, often directly accessed from anywhere in the exploitation tools.

Removing these snippets in the code is one major reason to clean up the GUI, as it is the first

step towards a new implementation of the exploitation tools.

In order to allow for a limited time co-existence between the old and the new GUI, interface

classes with these functionalities had been generated and implemented in both versions.

Changes in user interface

An important change is that the separation of execution and exploitation work steps had

been removed. So far, there was typically for each task in an execution work step (build

national data base) a matching exploitation task.

Instead, the different tasks related to runs of GAMS code can now be exploited directly. A

disadvantage of that layout is the fact that controls may be accessible which do not impact on

the results exploited. The main advantage is a clearer view by the user which runs generate

which results. Even more important is the underlying clarity of the basic concept: each

executable task generates one major set of results which is stored in a GDX file. Along with

the results, meta data on the data used by the task and the task itself are stored in the GDX

file.

The layout required so far solely one conceptual change: as CAPREG is generating (still) in

one run time series data and the three year average, a “clone” of the CAPREG task allows

accessing the time series. However, it is anyhow planned to separate CAPREG into these two

tasks.

An exemption to the rule above is the exploitation of scenario results. Here, results of several

runs need to be compared in parallel. It is the only “exploitation” only work step related to the

production work flow.

As discussed below in more detail, three new work steps had been added which are not

directly linked to the production work flow:

1. Collection of meta information from the different work steps by accessing the meta

data information stored in the GDX files generated by the different work steps.

2. Batch execution of test suits or predefined production runs.

3. Generation of HTML based documentation of the GAMS code.

Finally, as in the old GUI, symbols from GDX files may be viewed based on the exploitation

tools.

A second difference to the existing GUI is the fact that all run specific settings are now found

in one panel. Again, it eases code development and maintenance. But it is also thought to

render the GUI more uniform. The reader is reminded that it is planned to generated

“reporters” which can be called on results sets. Once these are implemented, the steering

possibilities for “run simulation” will become smaller, as reports will be started separately.

An example can be found below. All controls for “run simulation” are now moved to the

upper right corner window. As can be seen from the screen shot, the basic layout of the GUI

along with colouring was not changed compared to the old GUI to reduce learning costs.

Users familiar with the old GUI should not face any difficulties in steering the new one as the

name of the controls and their functionality was not changed.

Integration of META data information

As already in the old GUI, the meta data from any work step can be loaded with the “show

meta data” button. That view allows a detailed control of the different data sources used by

the different work steps.

The tasks store basically three different types of meta information. Firstly, most data sets read

by a work step carry by now appropriate meta data which is added to the meta information for

the task. Secondly, when a task is started, its GAMS include carries meta information about

the current run (the user, data and time, settings etc.). And thirdly, meta information from

results sets of earlier runs used by the current run are added.

A new feature still in the development and test phase is the “collect meta information” view.

As seen below. It lists for each task two main meta data per Member State: the user who

started the task, and the data and time of execution. Each task has a sequence number (#), and

the underlying class AgpCollectMeta will show a line a task in red if the current version on

disk for a task with a smaller sequence number is younger. As the META data and the results

are stored in the same GDX file, shipping files between computers e.g. via the SVN server

can never separate the meta information and the actual data, and the “Collect meta

information” task will thus use always the actual information from the data files. The actual

layout of the table will certainly change, and most probably based on a revised

implementation of the normal exploitation tools.

As a first step in direction of assisting users in checking the logical consistency of the data in

use, the table will print an entry – the combination of a Member State and a work step - in red

if the underlying results from a previous work step are younger. At a later stage, that must be

expanded to cover also data sources commonly used by different work steps.

For details on the integration of meta data in CAPRI see the technical document “Integrating

meta information in the CAPRI production chain” to be found on the Capri web page under

technical documents.

Integration of the batch execution facility

The batch execution facility is a tool which:

• Allows executing many different CAPRI task after each other without requiring user

input.

• Reports the settings used, any errors and GAMS result codes in a HTML page from

which they may queried at a later time.

• Ensures that each new run generates its own listing file, which can be opened from the

HTML page.

• Allows storing the output of the different runs in a separate directory, while reading

input from unchanged result directories.

The purpose of the batch execution facility is therefore at least twofold. At the one hand, it

allows to set up test suits for the CAPRI GAMS code such as checking for compilation

without errors for all tasks and different settings such as with and without market parts etc..

Secondly, production runs of e.g. different scenarios can be started automatically. It is

planned to add timer facilities to the batch execution so that the GUI will start a suite of runs

at a pre-scheduled time. Along with the planned functionalities to compare in a more or less

automated way differences in results between versions, the batch facility is one important step

towards quality control.

For details on the batch execution facility see the technical document “Batch execution of

CAPRI tasks” to be found on the Capri web page under technical documents.

So far, the batch execution facility was only used for tests, and started “blindly” in the

console. Now, the batch execution facility can be started from the GUI, and the console

output of GAMS is shown in the GUI.

The steering of the batch execution facility is very simple: (1) selecting the file with the batch

command, and (2) hitting the start button. A run batch job may be cancelled such that the

running GAMS code is terminating on its own, or by sending a SIGINT signal to the current

GAMS job, requesting its termination.

The batch execution facility is linked to the HTML based code documentation a la javadoc:

the generation of the necessary input files (reference and expand files from GAMS) can be

switched on with a check box in the GUI. Equally, the directory where these files are

generated can be determined.

There is still some coding necessary as currently the name of the files are equivalent to the

GAMS program called. As long as e.g. policy shifts, baseline calibration and a simulation run

are all based on CAPMOD, the last CAPMOD run will be documented.

Integration of the HTML based code documentation

Another feature developed and not yet integrated in the old GUI was the HTML based GAMS

code documentation. It builds on information provided by GAMS via specific files (reference

and expand files) which can be generated by the GAMS compiler. The steering so far is rather

straightforward. The user selects the directory where the expand and reference files are to be

found, and the GUI loads all files found. Now, the user selects the programs to document and

start the HTML based documentation generation.

In order to test a batch execution file, the “only compile GAMS programs” check box can be

activated. In that case, the batch execution facility will not execute the GAMS programs

which should prevent overwriting existing results.

For details on the code documentation facility see the technical document “Javadoc like

technical documentation for CAPRI” to be found on the Capri web page under technical

documents.

Next steps

The final release of the new version and removal of the old one is planned in 2009 after the

new interface has been thoroughly tested. The old code will be removed from the code base,

so that any remaining references to static instances of Capri in the exploitation part can be

removed. A similar refactoring is certainly necessary for the exploitation part of CAPRI.

